Skip to main content
Log in

Multiple Chromosomal Polymorphism of “Evoron” Chromosomal Race of the Evoron Vole (Rodentia, Arvicolinae)

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

On the basis of a study of our own and published data on voles from the shores of Lake Evoron (n = 8) and the Amgun River (n = 8) in the Evoron-Chukchagir lowland, as well as individuals from laboratory breeding, new data on karyotypic variation (2n = 38–41, NF = 54–59), chromosomal transformations, and their combinations in the karyotype are presented. The numbering of chromosomes in the Evoron vole karyotype using differential (GTG) staining methods made it possible to identify pairs of chromosomes involved in various chromosomal rearrangements and to number the original pairs for the pairs formed from them by chromosome fusion. The tandem telomere-telomere (TTel) fusions of biarmed chromosomes form a large submetacentric element Mev1/4M; telomere-centromere fusion (TCen) as a result of inactivation of the centromere in one of the acrocentric pairs forms either an acrocentric (Mev17/18A) or metacentric element (Mev17/18M), and the Robertsonian translocation of the same pairs forms a metacentric element (Mev17/18M). The variability of the centromere position in two pairs of autosomes (Mev8 and Mev14) is also shown. The revealed rearrangements made it possible to describe twelve variants of the karyotype: two with 2n = 41, six with 2n = 40, three with 2n = 39, and one with 2n = 38. It is proposed that the voles of the Evoron-Chukchagir lowland be assigned to the “еvoron” chromosome race, and the other voles be assigned to the “argi” race. Prolific offspring from the individuals with TTel fusion in the karyotype and a high percentage of this rearrangement in individuals from natural sample sets indicates the absence of a harmful effect on the viability of voles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFRERENCES

  1. Pozdnyakov, A.A., Morphotypic variability of molars in meadow voles “maximowiczii” group (Rodentia, Arvicolidae, Microtus): an attampt of quantitative statistical analysis, Zool. Zh., 1993, vol. 72, no. 11, pp. 114—125.

    Google Scholar 

  2. Meier, M.N., Golenishchev, F.N., Radzhabli, S.I., and Sablina, O.L., Serye polevki fauny Rossii i sopredel’nykh territorii (Voles (Subgenus Microtus Schrank) of Russia and Adjacent Territories), St. Petersburg: Zool. Inst. Ross. Akad. Nauk, 1996.

  3. Lissovsky, A.A. and Obolenskaya, E.V., The structure of craniometric diversity of grey voles Microtus subgenus Alexandromys, Tr. Zool. Inst. Ross. Akad. Nauk, 2011, vol. 315, no. 4, pp. 461—477.

    Google Scholar 

  4. Voyta, L.L., Golenischev, F.N., and Tiunov, M.P., Far-Eastern grey voles Alexandromys (Rodentia: Cricetidae) from Medvezhyi Klyk Cave Late Pleistocene—Holocene deposits, Primorskii kray, Russia Tr. Zool. Inst. Ross. Akad. Nauk, 2019, vol. 323, no. 3, pp. 313—346.

    Google Scholar 

  5. Frisman, L.V., Korobitsyna, K.V., Kartavtseva, I.V., et al., Voles (Microtus Schrank, 1798) of the Russian Far East: allozymic and karyological divergence, Russ. J. Genet., 2009, vol. 45, no. 6, pp. 707—714. https://doi.org/10.1134/S1022795409060106

    Article  CAS  Google Scholar 

  6. Lemskaya, N.A., Romanenko, S.A., Golenishchev, F.N., et al., Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia): III. Karyotype relationships of ten Microtus species, Chromosome Res., 2010, vol. 18, pp. 459—471. https://doi.org/10.1007/s10577-010-9124-0

    Article  PubMed  CAS  Google Scholar 

  7. Koval’skaya, Yu.M., Chromosome polymorphism in Microtus maximowiczii Schrenck, 1858 (Rodentia, Cricetidae), Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1977, vol. 82, no. 2, pp. 38—48.

    Google Scholar 

  8. Orlov, V.N. and Bulatova, N.Sh., Sravnitel’naya tsitogenetika i kariosistematika mlekopitayushchikh (Comparative Cytogenetics and Karyosystematics of Mammals), Moscow: Nauka, 1983.

  9. Koval’skaya, Yu.M. and Sokolov, V.E., Microtus evoronensis sp.n. (Rodentia, Cricetidae, Microtinae) from from the lower Amur territory, Zool. Zh., 1980, vol. 59, no. 9, pp. 1409—1416.

    Google Scholar 

  10. Kartavtseva, I.V., Sheremetyeva, I.N., Korobitsina, K.V., et al., Chromosomal forms of Microtus maximowiczii (Schrenck, 1858) (Rodentia, Cricetidae): variability in 2n and NF in different geographic regions, Russ. J. Theriol., 2008, vol. 7, no. 2, pp. 89—97.

    Article  Google Scholar 

  11. Harada, M., Ando, A., Lin, L.-K., and Takada, S., Karyotypes of Taiwan vole Microtus kikuchii and the Pere David’s vole Eothenomys melanogaster from Taiwan, J. Mammal. Soc. Jpn., 1991, vol. 16, no. 1, pp. 41—45.

    Google Scholar 

  12. Meier, M.N. and Volobuev, V.G., Morphological characteristics and chromosomes of the Sakhalin vole—Microtus sachalinensis Vasin, 1955, Rodentia, Cricetidae, Tr. Biol.-Pochv. Inst. Dal’nevost. Nauchn. Tsentr, Russ. Akad. Nauk, 1974, vol. 17, no. 120, pp. 75—83.

    Google Scholar 

  13. Sheremetyeva, I.N., Kartavtseva, I.V., Voyta, L.L., et al., Morphometric analysis of intraspecific variation in Microtus maximowiczii (Rodentia, Cricetidae) in relation to chromosomal differentiation with reinstatement of Microtus gromovi Vorontsov, Boeskorov, Lyapunova et Revin, 1988, stat. nov., J. Zool. Syst. Evol. Res., 2009, vol. 47, no. 1, pp. 42—48. https://doi.org/10.1111/j.1439-0469.2008.00511.x

    Article  Google Scholar 

  14. Fredga, K. and Bergstrem, U., Chromosome polymorphism in the root vole (Microtus oeconomus), Hereditas, 1970, vol. 66, no. 1, pp. 145—152. https://doi.org/10.1111/j.1601-5223.1970.tb02340.x

    Article  PubMed  CAS  Google Scholar 

  15. Baskevich, M.I., Khlyap, L.A., and Schwartz, E.A., Chromosomal polymorphism in the peripheral population of the root vole Mirotus oeconomus (Rodentia, Arvicolinae) of the Valdai National Park, Dokl. Biol. Sci., 2014, vol. 454, pp. 29—33. https://doi.org/10.1134/S0012496614010062

    Article  PubMed  CAS  Google Scholar 

  16. Kyoya, T., Obara, Y., and Nakata, A., Chromosomal aberrations in Japanese voles in and around an illegal dumpsite at the Aomori—Iwate prefectural boundary, Zool. Sci., 2008, vol. 25, no. 3, pp. 307—312. https://doi.org/10.2108/zsj.25.30

    Article  Google Scholar 

  17. Kartavtseva, I.V. and Kryukov, A.P., Karyotype of Microtus fortis (Rodentia, Cricetidae) from extreme south of Far East Russia, Chromosome Sci., 1998, vol. 2, pp. 31—34.

    Google Scholar 

  18. Couranta, F., Brunet-Lecomtea, P., Volobouev, V., et al., Karyological and dental identification of Microtus limnophilus in a large focus of alveolar echinococcosis (Gansu, China), Biol. Pathol. Anim., 1999, vol. 322, pp. 473—480. https://doi.org/10.1016/S0764-4469(99)80097-3

    Article  Google Scholar 

  19. Kartavtseva, I.V., Vasilieva, T.V., Sheremetyeva, I.N., et al., Genetic variability of three isolated populations of the Muya Valley vole Alexandromys mujanensis Orlov et Kovalskaja, 1978 (Rodentia, Arvicolinae), Russ. J. Genet., 2019, vol. 55, no. 8, pp. 978—992. https://doi.org/10.1134/S1022795419080076

    Article  CAS  Google Scholar 

  20. Lissovsky, A.A., Petrova, T.V., Yatsentyuk, S.P., et al., Multilocus phylogeny and taxonomy of East Asian voles Alexandromys (Rodentia, Arvicolinae), Zool. Scripta, 2018, vol. 47, no. 1, pp. 9—20. https://doi.org/10.1111/zsc.12261

    Article  Google Scholar 

  21. Kartavtseva, I.V., Sheremetyeva, I.N., Romanenko S.A., and Gladkikh, O.L., Chromosomes variability of the Maximowicz’s vole Microtus maximowiczii (Rodentia, Cricetidae, Microtus), Tsitologiya, 2013, vol. 55, no. 4, pp. 261—263.

    CAS  Google Scholar 

  22. Golenishchev, F.N. and Radzhabli, S.I., A new species of gray voles from the shores of Lake Evoron, Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 1, pp. 248—250.

    Google Scholar 

  23. Sheremetyeva, I.N., Kartavtseva, I.V., Voyta, L.L., and Tiunov, M.P., New data on the distribution of voles of the genus Microtus (Rodentia: Cricetidae) in the Russian Far East, Zool. Zh., 2010, vol. 89, no. 10, pp. 1273—1276.

    Google Scholar 

  24. Kartavtseva, I.V., Sheremet’eva, I.N., Nemkova, G.A., and Lazurchenko, E.V., Chromosomal studies of the Maksimovich vole Microtus maximowiczii Schrenk, 1858 in the Norsk Nature Reserve in the Amur oblast and the Evoron vole Microtus evoronensis Kovalsk. et Sokolov, 1980 environs of Lake Evoron, Khabarovsk kray, in Teriofauna Rossii i sopredel’nykh territorii (Theriofauna of Russia and Adjacent Territories), Moscow: KMK, 2007.

    Google Scholar 

  25. Sheremetyeva, I.N., Kartavtseva, I.V., Vasiljeva, T.V., and Frisman, L.V., Voles of the genus Alexandromys from the Verkhnebureinskaya Depression, Biol. Bull., 2017, vol. 44, no. 7, pp. 813—819. https://doi.org/10.1134/S1062359017070159

    Article  Google Scholar 

  26. Sheremetyeva, I.N., Kartavtseva, I.V., and Vasil’eva, T.V., Does Alexandromys evoronensis inhabit the northeast of Verkhnezeyskaya a Plain?, Zool. Zh., 2017, vol. 96, no. 4, pp. 477—484.

    Google Scholar 

  27. Kartavtseva, I.V., Sheremetyeva, I.N., Pavlenko, M.V., et al., A new chromosomal race of the Evoron voles Alexandromys evoronensis of two isolated populations in the Russian Far East, 6th International Conference of Rodent Biology and Management and 16th Rodents et Spatium (3–7 September, 2018, Potsdam, Germany): Book of Abstracts, Potsdam, 2018, p. 268.

  28. Haring, E., Sheremetyeva, I.N., and Kryukov, A.P., Phylogeny of Palearctic vole species (genus Microtus, Rodentia) based on mitochondrial sequences, Mamm. Biol., 2011, vol. 76, pp. 258—267. https://doi.org/10.1016/j.mambio.2010.04.006

    Article  Google Scholar 

  29. Pavlenko, M.V., Sheremet’eva, I.N., and Vasil’eva, T.V., Nuances of laboratory breeding and reproduction of Alexandromys Ognev, 1914 grey voles from the population of unclear taxonomic status from the north-east of Verkhnezeyskaya Plain, Vestn. Irkutsk. Gos. S.-kh. Akad., 2017, vol. 83, pp. 120—125.

    Google Scholar 

  30. Ford, C.F. and Hamerton, J.L., A colchicine hypotonic citrate squash preparation for mammalian chromosomes, Stain Technol., 1956, vol. 31, pp. 247—251.

    Article  CAS  Google Scholar 

  31. Grafodatskii, A.S. and Radzhabli, S.I., Khromosomy sel’skokhozyaistvennykh i laboratornykh mlekopitayushchikh: atlas (Chromosomes of Agricultural and Laboratory Mammals: Atlas), Novosibirsk: Nauka, 1988.

  32. Seabright, M., A rapid banding technique for human chromosomes, Lancet, 1971, vol. 2, no. 7731, pp. 971—972.

    Article  CAS  Google Scholar 

  33. Sumner, A.T., A simple technique for demonstrating centromeric heterochromatin, Exp. Cell Res., 1972, vol. 83, pp. 438—442.

    Article  Google Scholar 

  34. Miinke, M. and Schmiady, H., A simple one-step for staining the nucleolus organizer region, Experientia, 1979, vol. 35, pp. 602—603.

    Article  Google Scholar 

  35. Sablina, O.V., Radjabli, S.I., and Graphodatsky, A.S., Selected karyotypes, in Atlas of Mammalian Karyotypes, O’Brien, S.J., Nash, W.G., and Menninger, J.C., Eds., 2006, p. 267.

    Google Scholar 

  36. Sheremetyeva, I.N., Kartavtseva, I.V., and Frisman, L.V., Karyological and allozyme variability of Far Eastern voles Microtus fortis Büchner, 1889 (Cricetidae, Rodentia) from the Russian Far East, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 681—690. https://doi.org/10.1134/S1022795406060147

    Article  CAS  Google Scholar 

  37. Kulemzina, A.I., Trifonov, V.A., Perelman, P.L., et al., Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages, Chrom. Res., 2009, vol. 17, pp. 419—436. https://doi.org/10.1007/s10577-009-9032-3

    Article  PubMed  CAS  Google Scholar 

  38. Elder, F.F.B. and Hsu, T.C., Tandem fusions in the evolution of mammalian chromosomes, in The Cytogenetics of Mammalian Autosomal Rearrangements, Sandberg, A.A., Ed., New York: Alan R. Liss, 1988, pp. 481—506.

    Google Scholar 

  39. Dobigny, G., Britton-Davidian, J., and Robinson, T.J., Chromosomal polymorphism in mammals: an evolutionary perspective, Biol. Rev., 2017, vol. 92, pp. 1—21. https://doi.org/10.1111/brv.12213

    Article  PubMed  Google Scholar 

  40. Liming, S., Yingying, Y., and Xingsheng, D., Comparative cytogenetic studies on the red muntjac, Chinese muntjac, and their F1 hybrids, Cytogen. Cell Genet., 1980, vol. 26, pp. 22—27.

    Article  CAS  Google Scholar 

  41. Huang, L., Wang, J., Nie, W., Su, W., and Yang, F., Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis, Chromosome Res., 2006, vol. 14, pp. 637—647.

    Article  CAS  Google Scholar 

  42. Elder, F.F.B., Tandem fusion, centric fusion, and chromosomal evolution in the cotton rats, genus Sigmodon, Cytogent. Cell Genet., 1980, vol. 26, pp. 199—210.

    Article  CAS  Google Scholar 

  43. Swier, V.J., Bradley, R.D., Rens, W., et al., Patterns of chromosomal evolution in Sigmodon, evidence from whole chromosome paints, Cytogent. Cell Genet., 2009, vol. 125, pp. 54—66.

    Article  CAS  Google Scholar 

  44. Modi, W.S., Phylogenetic analyses of chromosomal banding patterns among the Nearctic Arvicolidae (Mammalia, Rodentia), Syst. Zool., 1987, vol. 36, no. 2, pp. 109—136.

    Article  Google Scholar 

  45. Sitnikova, N.A., Romanenko, S.A., O’Brien, P.C., et al., Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia): 1. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting, Chromosome Res., 2007, vol. 15, pp. 447—456.

    Article  CAS  Google Scholar 

  46. Lemskaya, N.A., Romanenko, S.A., Golenishchev, F.N., et al., Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia): III. Karyotype relationships of ten Microtus species, Chromosome Res., 2010, vol. 18, pp. 459—471. https://doi.org/10.1007/s10577-010-9124-0

    Article  PubMed  CAS  Google Scholar 

  47. Mazurok, N.A., Rubtsova, N.V., Isaenko, A.A., et al., Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae), Chromosome Res., 2001, vol. 9, pp. 107—120.

    Article  CAS  Google Scholar 

  48. King, M., Chromosomal Speciation Revisited (Again): Species Evolution. The Role of Chromosome Change, Cambridge: Cambridge Univ. Press, 1993.

    Google Scholar 

  49. Owen, J.G. and Baker, R.K., The Uroderma bilobatum (Chiroptera, Phyllostomidae) cline revisited, J. Mammal., 2001, vol. 82, no. 4, pp. 1102—1113. https://doi.org/10.1644/1545-1542(2001)082<1102:TU-BCPC>2.0.CO;2

    Article  Google Scholar 

  50. Massarini, A., Mizrahi, D., Tiranti, S., et al., Extensive chromosomal variation in Ctenomys talarum from the Atlantic coast of Buenos Aires province, Argentina (Rodentia, Octodontidae), J. Neotrop. Mammal., 2002, vol. 9, pp. 199—207.

    Google Scholar 

  51. Kovalskaya, Y., Aniskin, V., Bogomolov, P., et al., Karyotype reorganization in the subtilis group of Birch Mice (Rodentia, Dipodidae, Sicista): unexpected taxonomic diversity within a limited distribution, Cytogent. Cell Genet., 2011, vol. 132, pp. 271—288. https://doi.org/10.1159/000322823

    Article  CAS  Google Scholar 

  52. Basheva, E.A., Torgasheva, A.A., Gomez Fernandez, M.J., et al., Chromosome synapsis and recombination in simple and complex chromosomal heterozygotes of tuco-tuco (Ctenomys talarum: Rodentia: Ctenomyidae), Chromosome Res., 2014, vol. 22, no. 3, pp. 351—363. https://doi.org/10.1007/s10577-014-9429-5

    Article  PubMed  CAS  Google Scholar 

  53. Radzhabli, S.I. and Grafodatskii, A.S., Evolution of the mammalian karyotype: structural rearrangements of chromosomes and the heterochromatin, in Tsitogenetika gibridov, mutatsii i evolyutsiya kariotipa (Cytogenetics of Hybrids, Mutations and the Karyotype Evolution), Novosibirsk: Nauka, 1977, pp. 231—249.

    Google Scholar 

  54. Garcia–Cao, M., O’Sullivan, R., Peters, A.H., Jenuwein, T., and Blasco, M.A., Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases, Nat. Genet., 2004, vol. 36, pp. 94—99. https://doi.org/10.1038/ng1278

    Article  PubMed  CAS  Google Scholar 

  55. Benetti, R., Garcia-Cao, M., and Blasco, M. A., Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres, Nat. Genet., 2007, vol. 39, pp. 243—250. https://doi.org/10.1038/ng1952

    Article  PubMed  CAS  Google Scholar 

  56. Palm, W., and de Lange, T., How shelterin protects mammalian telomeres, Annu. Rev. Genet., 2008, vol. 42, pp. 301—334. https://doi.org/10.1146/annurev.genet.41.110306.130350

    Article  PubMed  CAS  Google Scholar 

  57. Kordyukova, M.Y. and Kalmykova, A.I., Nature and functions of telomeric transcripts, Biochemistry (Moscow), 2019, vol. 84, no. 2, pp. 137—146. https://doi.org/10.1134/S0006297919020044

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank T.V. Vasilieva for his help in karyotyping the laboratory voles.

Funding

This work was supported by the Russian Foundation for Basic Research (12-04-00662a, 15-04-03871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kartavtseva.

Ethics declarations

Conflict of interest. The authors declare they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals have been followed.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartavtseva, I.V., Sheremetyeva, I.N. & Pavlenko, M.V. Multiple Chromosomal Polymorphism of “Evoron” Chromosomal Race of the Evoron Vole (Rodentia, Arvicolinae). Russ J Genet 57, 70–82 (2021). https://doi.org/10.1134/S1022795421010087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421010087

Keywords:

Navigation