Skip to main content
Log in

Vavilov’s Series of the “Green Revolution” Genes

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

One hundred years ago N.I. Vavilov formulated the Law of homologous series in hereditary variability. Among the broad range of examples that encouraged N.I. Vavilov to make this important generalization, homologous series in plant height variability were mentioned. In the current review, we compare data collected over the century on genetic basis and molecular mechanisms behind the series in plant height variability with the stress on “Green revolution” genes. Application of fertilizers boosted redirection of artificial selection from tall-growing varieties to those with reduced height. The sources of GA-sensitive and GA-insensitive reduced height (Rht) genes in wheat and rice first were involved in crosses in Japan and China. The commercially valuable alleles of the Rht genes were spread broadly in varieties released in 1960s all over the world. Results of genetic studies into inheritance of the Rht genes are summarized for rice and wheat (together with further Triticeae crops–barley and rye). Three orthologous series of reduced plant height genes have been found within Triticeae tribe species and rice: (1) wheat Rht12 and rye Ddw1; (2) wheat Rht-B1/D1 and barley Dwf2; (3) barley denso/sdw1 and rice sd1. Molecular and cell mechanisms underlying plant reduced height are considered with focus on metabolic pathways regulated by commercially valuable alleles of Rht genes: GA-insensitive Rht-B1/D1 and GA-sensitive sd1, denso/sdw1, Rht8, Rht12, Rht18, Ddw1. Overall, in spite of similar metabolic pathways, the certain genes conferring variability for plant height are often distinct, resulting in existence of several “short” orthologous series of genes rather than one series through different cereal taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Filipchenko, Yu.A., About the parallelism in nature, Adv. Exp. Biol., 1924, vol. 3, nos. 3—4, pp. 242—258.

    Google Scholar 

  2. Vavilov, N.I., The law of homological series in hereditary variability, Proceedings of the III All-Russian Congress on Selection and Seed Production in Saratov, June 4–13,1920, 1920, issue 1, pp. 41—56.

  3. Vavilov, N.I., The law of homologous series in variation, J. Genet., 1922, vol. 12, no. 1, pp. 47—89.

    Article  Google Scholar 

  4. Vavilov, N.I., The Law of Homological Series in Hereditary Variation, Moscow: Selkhozgiz, 1935.

    Google Scholar 

  5. Goncharov, N.P., Nikolay Ivanovich Vavilov, Novosibirsk: Geo, 2017, 2nd ed.

    Google Scholar 

  6. Vavilov, N.I., Regularities of the Development of the Living World, Saratov, 1920.

    Google Scholar 

  7. Vavilov, N.I., Development patterns of the living world, Tekh. Molodezhi, 1967, no. 8, pp. 14—15.

  8. Vavilov, N.I., The law of homological series in hereditary variation, Agric. For., 1921, nos. 1—2—3, pp. 84—101.

  9. Vavilov, N.I., The Law of Homological Series in Hereditary Variability, Leningrad: Nauka, 1987.

    Google Scholar 

  10. Reznik, S.E., This Short Life: Nikolay Vavilov and His Time, Moscow: Zakharov, 2017.

    Google Scholar 

  11. Vavilov, N.I., Patterns in the plant variation, Selection and Seed Production by 1923, Moscow: New Village, 1924, pp. 3—20.

    Google Scholar 

  12. Vavilov, N.I., Immunity to fungous diseases as a physiological test in genetics and systematics, exemplified in cereals, J. Genet. (Cambridge), 1914, vol. 4, no. 1, pp. 49—65.

    Article  Google Scholar 

  13. Lobashev, M.E., Present and future of the scientific heritage of N.I. Vavilov, in N.I. Vavilov and Agricultural Science, Moscow: Kolos, 1969, pp. 392—393.

    Google Scholar 

  14. Dalryple, D.G., Imports and plantings of high-yielding varieties of wheat and rice in the less developed nations, U.S.D.A.For. Agr. Serv., 1969, p. 27.

    Google Scholar 

  15. Lyapunova, O.A., Durum wheat breeding in Italy, Lett.Vavilovskii J. Genet. Breed., 2019, vol. 5, no. 1, pp. 19—34. https://doi.org/10.18699/Letters2019-5-3

    Article  Google Scholar 

  16. Crop Testing Guide, Zhukovsky, P., Ed., Moscow: Sel’khozgiz, 1960.

    Google Scholar 

  17. Luk’yanenko, P.P., Varieties and seed production of winter wheat, in Intensification of Grain Production, Moscow: Rossel’khozizdat, 1968, pp. 99—110.

    Google Scholar 

  18. Romanenko, A.A., One hundred years of scientific research: history and achievements, Zemledelie, 2014, vol. 3, pp. 3—4.

    Google Scholar 

  19. Reitz, L.P. and Salmon, S.C., Origin, history and use of Norin 10 wheat, Crop Sci., 1968, vol. 8, no. 6, pp. 686—689.

    Article  Google Scholar 

  20. Vogel, O.A., Registration of Gaines wheat (Reg. no. 425), Crop Sci., 1964, vol. 4, pp. 116—117.

    Article  Google Scholar 

  21. Briggle, L.W. and Vogel, O.A., Breeding short-stature, disease-resistant wheats in the United States, Euphytica, 1968, vol. 17, suppl. 1, pp. 107—130.

    Google Scholar 

  22. Gomme, F.R., Wheat varieties over the years, U.S.D.A. Econ. Res. Serv., WS, 1967, vol. 201, nos. 17—19, issue 25, pp. 43—44.

  23. Dalrymple, D.G., The development and adoption of high-yielding varieties of wheat and rice in developing countries, Am. J. Agric. Econ., 1985, no. 67, pp. 1067—1073.

  24. Vilmorin, P., Sur une race de blenaininfixable, J. Genet., 1913, vol. 3, pp. 67—76. https://doi.org/10.1007/BF02981565

    Article  Google Scholar 

  25. Ausemus, E.R., Harrington, Y.B., Worzella, W.S., and Reitz, R.L., A summary of genetic studies in hexaploid and tetraploid wheats, J. Am. Soc. Agronomists, 1946, vol. 38, pp. 1082—1099.

    Article  Google Scholar 

  26. Allan, R.E. and Vogel, O.A., A method for predicting semi-dwarf genotypes in Triticum aestivum L., Agron. Abstr., 1968, p. 2.

    Google Scholar 

  27. Allan, R.E., Differentiating between two Norin 10/Brevor 14 semi dwarf genes in a common genetic background, Seiken Ziho., 1979, vol. 22, pp. 83—90.

    Google Scholar 

  28. Dwarfness in Hybrids, CIMMYT-Report, Mexiko, 1966—1967.

  29. Morris, R., Schmidt, J., and Johnson, V.A., Chromosomal location of a dwarfing gene in ‘Tom Thumb’ wheat derivate by monosomic analysis, Crop Sci., 1972, vol. 12, pp. 247—249.

    Article  Google Scholar 

  30. Allan, R.E., Vogel, O.A., and Craddock, J.C., Jr., Comparative response to gibberellic acid of dwarf, semi-dwarf, and standard short and tall winter wheat varieties, Agron. J., 1959, vol. 51, pp. 737—740.

    Article  CAS  Google Scholar 

  31. Gale, M.D. and Marshall, G.A., The nature and genetic control of gibberellic insensitivity in dwarf wheat grain, Heredity, 1975, vol. 35, pp. 55—65.

    Article  Google Scholar 

  32. Gale, M.D. and Marshall, G.A., The chromosomal location of Gai1 and Rht1 genes for gibberellin insensitivity and semi-dwarfism, in a derivative of Norin 10 wheat, Heredity, 1976, vol. 37, pp. 283—289.

    Article  Google Scholar 

  33. Gale, M.D., Law, C.N., and Worland, A.J., The chromosomal location of a major dwarfing gene from Norin 10 in new British semi-dwarf wheat, Heredity, 1975, vol. 35, pp. 417—421.

    Article  Google Scholar 

  34. Gale, M.D., Law, C.N., Marshall, G.A., and Worland, A.J., The genetic control of gibberellic acid insensitivity and coleoptile length in a ‘dwarf’ wheat, Heredity, 1975, vol. 34, pp. 393—399.

    Article  Google Scholar 

  35. McVittie, J.A., Gale, M.D., Marshall, G.A., and Westcott, B., The intrachromosomal mapping of the Norin 10 and Tom Thumb dwarfing genes, Heredity, 1978, vol. 40, pp. 67—70.

    Article  Google Scholar 

  36. Worland, A.J. and Petrovic, S., The gibberellic acid insensitive dwarfing gene from the wheat variety Saitama 27, Euphytica, 1988, vol. 38, pp. 55—63.

    Article  Google Scholar 

  37. Worland, A.J., Gibberellic acid insensitive dwarfing genes in Southern European wheats, Euphytica, 1986, vol. 35, pp. 857—866.

    Article  CAS  Google Scholar 

  38. Börner, A., Plaschke, J., Korzun, V., et al., Wheat genetics research report, Annu. Wheat Newslett., 1995, vol. 41, pp. 90—93.

    Google Scholar 

  39. Izumi, N., Sawada, S., and Sasakuma, T., A dominant gene of dwarfism located on chromosome 4D in Triticum aestivum cv. ‘Ai-bian 1,’ Wheat Inf. Serv., 1981, vol. 53, pp. 21—24.

    Google Scholar 

  40. Börner, A. and Mettin, D., The genetic control of gibberellic acid insensitivity of the wheat variety Ai-Bian1, in Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, 1988, pp. 489—492.

  41. Börner, A., Lehmann, C.O., Mettin, D., et al., GA-insensitivity of ‘Ai-bian 1a’: pleiotropic effects of isogenic Rht-lines, Annu. Wheat Newslett., 1991, vol. 37, pp. 59—60.

    Google Scholar 

  42. Yang, T.Z., Zhang, X.K., Liu, H.W., and Wang, Z.H., Chromosomal arm location of a dominant dwarfing gene Rht21 in XN0004 of common wheat, Proceedings of the 8th International Wheat Genetics Symposium, 1995, pp. 839—842.

  43. Börner, A. and Worland, A.J., Does the Chinese dwarf variety ‘XN0004’ carry Rht21?, Cereal Res. Commun., 2002, vol. 30, pp. 25—29.

    Article  Google Scholar 

  44. Börner, A., Röder, M., and Korzun, V., Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.), Theor. Appl. Genet., 1997 vol. 95, pp. 1133—1137.

    Article  Google Scholar 

  45. Worland, A.J., Korzun, V., Röder, M.S., et al., Genetic analysis of the dwarfing gene (Rht8) in wheat. Part II: the distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening, Theor. Appl. Genet., 1998, vol. 96, pp. 1110—1120.

    Article  CAS  Google Scholar 

  46. Worland, A.J. and Law, C.N., Genetic analysis of chromosome 2D of wheat. 1. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow rust resistance, Pflanzenzüchtung, 1986, vol. 96, pp. 331—345.

    Google Scholar 

  47. Korzun, V., Röder, M.S., Ganal, M.W., et al., Genetic analysis of the dwarfing gene (Rht8) in wheat. I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 1998, vol. 96, pp. 1104—1109.

    Article  CAS  Google Scholar 

  48. Tian, X.L., Wen, W.E., Xie, L., et al., Molecular mapping of reduced plant height gene Rht24 in bread wheat, Front. Plant Sci., 2017, vol. 8, p. 1397.

    Article  Google Scholar 

  49. Würschum, T., Langer, S.M., Longin, C., et al., A modern green revolution gene for reduced height in wheat, Plant J., 2017, vol. 92, pp. 892—903.

    Article  PubMed  CAS  Google Scholar 

  50. Tian, X., Zhu, Z., Xie, L., et al., Preliminary exploration of the source, spread, and distribution of Rht24 reducing height in bread wheat, Crop Sci., 2019, vol. 59, pp. 19—24.

    Article  CAS  Google Scholar 

  51. Sutka, J. and Kovacs, G., Chromosomal location of the dwarfing gene Rht12 in wheat, Euphytica, 1987, vol. 36, pp. 521—523.

    Article  Google Scholar 

  52. Worland, A.J., Sayers, E.J., and Börner, A., The genetics and breeding potential of Rht12, a dominant dwarfing gene in wheat, Plant Breed., 1994, vol. 113, pp. 187—196.

    Article  Google Scholar 

  53. Liu, C.J., Atkinson, M.D., Chinoy, C.N., et al., Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye, Theor. Appl. Genet., 1992, vol. 83, pp. 305—312.

    Article  CAS  PubMed  Google Scholar 

  54. Korzun, V., Röder, M., Worland, A.J., and Börner, A., Mapping of the dwarfing (Rht12) and vernalisation response (Vrn1) genes in wheat by using RFLP and microsatellite markers, Plant Breed., 1997, vol. 116, pp. 227—232.

    Article  Google Scholar 

  55. Kobyljanski, V.D., On the genetics of the dominant factor of short-strawed rye, Genetika (Moscow), 1972, vol. 8, pp. 12—17.

    Google Scholar 

  56. Sturm, W. and Engel, K.-H.,Trisomenanalyse des Allels Hl für Kurzstrohigkeit bei Secale cereale L., Arch.Züchtungsforsch., 1980, vol. 10, pp. 31—35.

    Google Scholar 

  57. Börner, A. and Melz, G., Response of rye genotypes differing in plant height to exogenous gibberellic acid application, Arch.Züchtungsforsch., 1988, vol. 18, pp. 79—82.

    Google Scholar 

  58. Korzun, V., Melz, G., and Börner, A., RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.), Theor. Appl. Genet., 1996, vol. 92, pp. 1073—1077.

    Article  CAS  PubMed  Google Scholar 

  59. Korzun, V., Malyshev, S., Kartel, N., et al., A genetic linkage map of rye (Secale cereale L.), Theor. Appl. Genet., 1998, vol. 96, pp. 203—208.

    Article  CAS  Google Scholar 

  60. Devos, K.M., Atkinson, M.D., Chinoy, C.N., et al., Chromosomal rearrangements in the rye genome relative to that of wheat, Theor. Appl. Genet., 1993, vol. 85, pp. 673—680.

    Article  CAS  PubMed  Google Scholar 

  61. Braun, E.-M., Tsvetkova, N., Rotter, B., et al., Gene expression profiling and fine mapping identifies a Gibberellin 2-Oxidase gene co-segregating with the dominant dwarfing gene Ddw1 in rye (Secale cereale L.), Front. Plant Sci., 2019, vol.10, p. 857. https://doi.org/10.3389/fpls.2019.00857

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kalih, R., Maurer, H.P., Hackauf, B., and Miedaner, T., Effect of a rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (×Triticosecale Wittmack), Theor. Appl. Genet., 2014, vol. 12, no. 7, pp. 1527—1536. https://doi.org/10.1007/s00122-014-2316-9

    Article  Google Scholar 

  63. Chernook, A., Kroupin, P., Karlov, G., et al., Effects of Rht-B1b and Ddw1 dwarfing genes in two connecting populations of spring Triticale under greenhouse experiment conditions, Agriculture, 2019, vol. 9, p. 119. https://doi.org/10.3390/agriculture9060119

    Article  Google Scholar 

  64. Kroupin, P., Chernook, A., Karlov, G., et al., Effect of dwarfing gene Ddw1 on height and agronomic traits in spring Triticale in greenhouse and field experiments in a non-black earth region of Russia, Plants, 2019, vol. 8, p. 131. https://doi.org/10.3390/plants8050131

    Article  CAS  PubMed Central  Google Scholar 

  65. Federov, V.S., Smirnov, V.G., and Sosnichina, S.P., Genetics of rye, Secale cereale L. X. The inheritance of dwarfness, Genetika (Moscow), 1970, vol. 6, pp. 5—17.

    Google Scholar 

  66. Börner, A., Genetical studies of gibberellic acid insensitivity in rye (Secale cereale L.), Plant Breed., 1991, vol. 106, pp. 53—57. https://doi.org/10.1111/j.1439-0523.1991.tb00479.x

    Article  Google Scholar 

  67. Melz, G. and Thiele, V., Results of cytogenetic investigations in rye (Secale cereale L.), Arch.Züchtungsforsch., 1989, vol. 19, pp. 421–428.

    Google Scholar 

  68. Plaschke, J., Börner, A., Xie, D.X., et al., RFLP-mapping of genes affecting plant height and growth habit in rye, Theor. Appl. Genet., 1993, vol. 85, pp. 1049—1054.

    Article  CAS  PubMed  Google Scholar 

  69. Plaschke, J., Korzun, V., Koebner, R.M.D., and Börner, A., Mapping of the GA3-insensitive dwarfing gene ct1 on chromosome 7R in rye, Plant Breed., 1995, vol. 114, pp. 113—116. https://doi.org/10.1111/j.1439-0523.1995.tb00773.x

    Article  CAS  Google Scholar 

  70. Grądzielewska, A., Milczarski, P., Molik, K., and Pawłowska, E., Identification and mapping of a new recessive dwarfing gene dw9 on the 6RL rye chromosome and its phenotypic effects, PLoS One, 2020, vol. 15, no. 3. e0229564. https://doi.org/10.1371/journal.pone.0229564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Laurie, D.A., Pratchett, N., Romero, C., et al., Assignment of the denso dwarfing gene to the long arm of chromosome 3 (3H) of barley by use of RFLP markers, Plant Breed., 1993, vol. 111, pp. 198—203.

    Article  Google Scholar 

  72. Zhang, J. and Zhang, W., Tracing sources of dwarfing genes in barley breeding in China, Euphytica, 2003, vol. 131, no. 3, pp. 285—293.

    Article  CAS  Google Scholar 

  73. Mickelson, H.R. and Rasmusson, D.C., Genes for short stature in barley, Crop Sci., 1994, vol. 34, no. 5, pp. 1180—1183.

    Article  Google Scholar 

  74. Ivandic, V., Malyshev, S., Korzun, V., et al., Comparative mapping of a gibberellic acid insensitive dwarfing gene (Dwf2) on chromosome 4HS in barley, Theor. Appl. Genet., 1999, vol. 98, pp. 728—731. https://doi.org/10.1007/s001220051127

    Article  CAS  Google Scholar 

  75. Zhang, B., Tian, F., Tan, L., et al., Characterization of a novel high-tillering dwarf 3 mutant in rice, J. Genet. Genomics, 2011, vol. 38, no. 9, pp. 411—418. https://doi.org/10.1016/j.jgg.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  76. Favret, E.A., Favret, G.C., and Malvarez, E.M., Genetic regulatory mechanisms for seedling growth in barley, Barley Genet., 1975, vol. 3, pp. 37—42.

    Google Scholar 

  77. Börner, A., Korzun, V., Malyshev, S., et al., Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley, Theor. Appl. Genet., 1999, vol. 99, pp. 670—675.

    Article  PubMed  Google Scholar 

  78. Falk, D.E., New dominant dwarfing gene (Dwf2) in barley, Barley Genet. Newslett., 1994, vol. 24, pp. 87—89.

    Google Scholar 

  79. Hedden, P., The genes of the Green Revolution, Trends Genet., 2003, vol. 19, no. 1, pp. 5—9. https://doi.org/10.1016/S0168-9525(02)00009-4

    Article  CAS  PubMed  Google Scholar 

  80. Cho, Y.G., Eun, M.Y., Kim, Y.K., et al., The semidwarf gene, sd-1, of rice (Oryza sativa L.). I. Linkage with the esterase locus, Estl-2, Theor. Appl. Genet., 1994, vol. 89, no. 1, pp. 49—53. https://doi.org/10.1007/BF00226981

    Article  CAS  PubMed  Google Scholar 

  81. Spielmeyer, W., Ellis, M.H., and Chandler, P.M., Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene, Proc. Natl. Acad. Sci., 2000, vol. 99, no. 13, pp. 9043—9048. https://doi.org/10.1073/pnas.132266399

    Article  CAS  Google Scholar 

  82. Stein, N., Prasad, M., Scholz, U., et al., A 1000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics, Theor. Appl. Genet., 2007, vol. 114, pp. 823—839. https://doi.org/10.1007/s00122-006-0480-2

    Article  CAS  PubMed  Google Scholar 

  83. Kikuchi, F., Itakura, N., Ikehashi, H., et al., Genetic analysis of semidwarfism in high yielding rice varieties in Japan, Bull. Natl. Inst. Agr. Sci.,Ser. D, 1985, vol. 36, pp. 125—145.

    Google Scholar 

  84. Foster, K.W. and Rutger, J.N., Inheritance of semidwarfism in rice, Oryza sativa L., Genetics, 1978, vol. 88, pp. 559—574.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Monna, L., Kitazawa, N., Yoshino, R., et al., Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis, DNA Res., 2002, vol. 9, no. 1, pp. 11—17. https://doi.org/10.1093/dnares/9.1.11

    Article  CAS  PubMed  Google Scholar 

  86. Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., et al., Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution,’ Breed. Sci., 2002, vol. 52, no. 2, pp. 143—150. https://doi.org/10.1270/jsbbs.52.143

    Article  CAS  Google Scholar 

  87. Koshio, K., Inaishi, Y.,Hayamichi, H., et al., Character expression of isogenic lines with semidwarfing genes of different origins in rice (Oryza sativa L.), J. Agric. Sci., 2000, vol. 45, pp. 201—209.

    Google Scholar 

  88. Murai, M., Nagano, H., Onishi, K., et al., Differentiation in wild-type allele of the sd1 locus concerning culm length between indica and japonica subspecies of Oryza sativa (rice), Hereditas, 2011, vol. 148, no. 1, pp. 1—7. https://doi.org/10.1111/j.1601-5223.2010.02168.x

    Article  PubMed  Google Scholar 

  89. Yamazaki, K., Tanabu, K., Takadate, M., et al., A new rice cultivar “Mutsuhomare,” Bull. Aomori Agric. Exp. Stn., 1987, vol. 30, pp. 1—17.

    Google Scholar 

  90. Kim, S.I., McKenzie, K.S., and Tai, T.H., A molecular survey of sd1 alleles used in U.S. rice cultivars, SABRO J. Breed. Genet., 2009, vol. 41, pp. 25—40.

    Google Scholar 

  91. Jia, X., Yu, L., Tang, M., et al., Pleiotropic changes revealed by in situ recovery of the semi-dwarf gene sd1 in rice, J. Plant Physiol., 2020, vol. 248, p. 153141. https://doi.org/10.1016/j.jplph.2020.153141

    Article  CAS  PubMed  Google Scholar 

  92. Peng, J., Richards, D.E., and Hartley, N.M., “Green revolution” genes encode mutant gibberellin response modulators, Nature, 1999, vol. 400, pp. 256—261. https://doi.org/10.1038/22307

    Article  CAS  PubMed  Google Scholar 

  93. Sun, T.P., Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development, Plant Physiol., 2010, vol. 154, pp. 567e—570e. https://doi.org/10.1104/pp.110.161554

    Article  CAS  Google Scholar 

  94. Pearce, S., Huttly, A.K., Prosser, I.M., et al., Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family, BMC Plant Biol., 2015, vol. 15. https://doi.org/10.1186/s12870-015-0520-7

  95. Bazhenov, M.S., Divashuk, M.G., Amagai, Y., et al., Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker, Mol. Breed., 2015, vol. 35. https://doi.org/10.1007/s11032-015-0407-1

  96. Divashuk, M.G., Vasilyev, A.V., Bespalova, L.A., and Karlov, G.I., Identity of the Rht-11 and Rht-B1e reduced plant height genes, Russ. J. Genet., 2012, vol. 48, pp. 761—763. https://doi.org/10.1134/S1022795412050055

    Article  CAS  Google Scholar 

  97. Yamaguchi, S., Gibberellin metabolism and its regulation, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 225—251.

    Article  CAS  PubMed  Google Scholar 

  98. Oikawa, T., Koshioka, M., and Kojima, K., A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice, Plant Mol. Biol., 2004, vol. 55, pp. 687—700.

    Article  CAS  PubMed  Google Scholar 

  99. Qin, X., Liu, J., Zhao, W., et al., Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice, Mol. Plant—Microbe Interact., 2013, vol. 26, no. 2, pp. 227—239. https://doi.org/10.1094/MPMI-05-12-0138-R

    Article  CAS  PubMed  Google Scholar 

  100. Jia, Q., Zhang, J., Westcott, S., et al., GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley, Funct. Integr. Genomics, 2009, vol. 9, no. 2, pp. 255—262. https://doi.org/10.1007/s10142-009-0120-4

    Article  CAS  PubMed  Google Scholar 

  101. Spielmeyer, W., Ellis, M., Robertson, M., et al., Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice, Theor. Appl. Genet., 2004, vol. 109, pp. 847—855.

    Article  CAS  PubMed  Google Scholar 

  102. Gasperini, D., Greenland, A., Hedden, P., et al., Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids, J. Exp. Bot., 2012, vol. 63, no. 12, pp. 4419—4436. https://doi.org/10.1093/jxb/ers138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chai, L., Chen, Z., Bian, R., et al., Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.), Theor. Appl. Genet., 2019, vol. 132, pp. 1815—1831. https://doi.org/10.1007/s00122-019-03421-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun, L., Yang, W., Li, Y., et al., A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line, Plant J., 2019, vol. 97, no. 5, pp. 887—900. https://doi.org/10.1111/tpj.14168

    Article  CAS  PubMed  Google Scholar 

  105. Chen, L., Yang, Y., Mishina, K., et al., RNA-seq analysis of the peduncle development of Rht12 dwarf plants and primary mapping of Rht12 in common wheat, Cereals Res. Commun., 2020, pp. 1—9. https://doi.org/10.1007/s42976-020-00019-y

    Book  Google Scholar 

  106. Ford, B.A., Foo, E., Sharwood, R., et al., Rht18 semidwarfism in wheat is due to increased GA2-oxidaseA9 expression and reduced GA content, Plant Phys., 2018, vol. 177, pp. 168—180. https://doi.org/10.1104/pp.18.00023

    Article  CAS  Google Scholar 

  107. Börner, A., Comparative genetic mapping in Triticeae, Plant Evolution in Man-Made Habitats (Proc. VIIth Sym. IOPBs, Amsterdam 1998), van Raamsdonk, L.W.D. and den Nijs, J.C.M., Eds., 1999, pp. 197—210.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. K. Khlestkina or A. Börner.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlestkina, E.K., Shvachko, N.A., Zavarzin, A.A. et al. Vavilov’s Series of the “Green Revolution” Genes. Russ J Genet 56, 1371–1380 (2020). https://doi.org/10.1134/S1022795420110046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420110046

Navigation