Skip to main content
Log in

Development of Molecular Markers Based on the L1 Retrotransposon Insertion Polymorphisms in Pigs (Sus scrofa) and Their Association with Economic Traits

  • MOLECULAR GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Molecular markers based on retrotransposon insertion polymorphisms (RTIPs) have great potential in studies of animal genetics and breeding. In this study, L1 RTIP markers were developed and evaluated by using microsatellite primers combined with L1 specific primers, and were further evaluated in four Chinese and three imported domestic pig breeds. Eight L1RTIP markers were obtained, and uneven distribution was observed among these breeds, with the Sujiang breed exhibiting the highest level of polymorphism with seven polymorphic sites, followed by Jiangquhai, Meishan, and Duroc with six, four, and four polymorphic sites, respectively. Both Landrace and Yorkshire pigs exhibited three polymorphic sites, while Chinese inbred Bama pig showed the lowest level of polymorphism with only one polymorphic site. Three polymorphic makers (L1-31-2, L1-31-5, and L1-31-11) were strongly associated with the economic traits in 462 Yorkshire pigs, with the L1-31-5+ genotype females had a significantly greater alive litter size (11.44 ± 2.80) compared with pigs with the L1-31-5 genotype (9.96 ± 2.89) (P < 0.05). L1-31-11 genotype pigs had significantly younger age at 100 kg of body weight (160.20 ± 10.26 days) than the L1-31-11+counter parts (162.47 ± 9.71 days) (P < 0.05). In summary, we demonstrated that it is feasible to develop markers based on L1 RTIP sin the pig, and these markers may have greater potential in the application of pig genetics and breeding compared to non-selective conventional breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Goodier, J.L. and Kazazian, H.H., Retrotransposons revisited: the restraint and rehabilitation of parasites, Cell, 2008, vol. 135, no. 1, p. 23.

    Article  CAS  Google Scholar 

  2. Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., et al., Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 2005, vol. 438, no. 7069, pp. 803—819.

    Article  CAS  Google Scholar 

  3. Lander, E.S., Linton, L.M., and Birren, B., International Human Genome Sequencing Consortium, Nature, 2001, vol. 412, no. 412, pp. 565—566.

    Article  CAS  Google Scholar 

  4. Groenen, M.A., Archibald, A.L., Uenishi, H., et al., Analyses of pig genomes provide insight into porcine demography and evolution, Nature, 2012, vol. 491, no. 7424, pp. 393—398.

    Article  CAS  Google Scholar 

  5. Gentles, A.J., Wakefield, M.J., Kohany, O., et al., Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica,Genome Res., 2007, vol. 17, no. 7, pp. 992—1004.

    Article  CAS  Google Scholar 

  6. Finnegan, D.J., Eukaryotic transposable elements and genome evolution, Trends Genet., 1989, vol. 5, no. C, pp. 103—107.

    Article  CAS  Google Scholar 

  7. Eickbush, T.H. and Malik, H.S., Origins and Evolution of Retrotransposons, 2002.

    Chapter  Google Scholar 

  8. Waterston, R.H., Lindblad-Toh, K., Birney, E., et al., Initial sequencing and comparative analysis of the mouse genome, Nature, 2002, vol. 420, no. 6915, pp. 520—562.

    Article  CAS  Google Scholar 

  9. Lander, E.S., Linton, L.M., Birren, B., et al., Initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, no. 6822, pp. 860—921.

    Article  CAS  Google Scholar 

  10. Deberardinis, R.J. and Al, E., Rapid amplification of a retrotransposon subfamily is evolving the mouse genome, Nat. Genet., 1998, vol. 20, no. 3, pp. 288—290.

    Article  CAS  Google Scholar 

  11. Mandal, P.K. and Kazazian, H.H., Jr., SnapShot: vertebrate transposons, Cell, 2008, vol. 135, no. 1, p. 192.

    Article  CAS  Google Scholar 

  12. Sassaman, D.M., Dombroski, B.A., Moran, J.V., et al., Many human L1 elements are capable of retrotransposition, Nat. Genet.,1997, vol. 16, no. 1, p. 37.

    Article  CAS  Google Scholar 

  13. Flavell, A.J., Dunbar, E., Anderson, R., et al., Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants, Nucleic Acids Res., 1992, vol. 20, no. 14, pp. 3639—3644.

    Article  CAS  Google Scholar 

  14. Hancks, D.C., and Kazazian, H.H., Jr., Active human retrotransposons: variation and disease, Curr. Opin. Genet. Dev., 2012, vol. 22, no. 3, pp. 191—203.

    Article  CAS  Google Scholar 

  15. Belancio, V.P., Hedges, D.J. and Deininger, P., Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health, Genome Res., 2008, vol. 18, no. 3, p. 343.

    Article  CAS  Google Scholar 

  16. Chen, J.M., Stenson, P.D., Cooper, D.N. and Férec, C., A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease, Hum. Genet., 2005, vol. 117, no. 5, pp. 411—427.

    Article  CAS  Google Scholar 

  17. Hancks, D.C. and Kazazian, H.H., Jr., Roles for retrotransposon insertions in human disease, Mob. DNA, 2016, vol. 7, no. 1, p. 9.

    Article  Google Scholar 

  18. Lohmueller, K.E., Indap, A.R., Schmidt, S., et al., Proportionally more deleterious genetic variation in European than in African populations, Nature, 2008, vol. 451, no. 7181, pp. 994—997.

    Article  CAS  Google Scholar 

  19. Ewing, A.D., Kazazian, H.H., Ewing, A.D., et al., Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans, Genome Res., 2011, vol. 21, no. 6, p. 985.

    Article  CAS  Google Scholar 

  20. Jakobsson, M., Scholz, S.W., Scheet, P., et al., Genotype, haplotype and copy-number variation in worldwide human populations, Nature, 2008, vol. 451, no. 7181, p. 998.

    Article  CAS  Google Scholar 

  21. Tishkoff, S.A. and Williams, S.M., Genetic analysis of African populations: human evolution and complex disease, Nat. Rev. Genet., 2002, vol. 3, no. 8, pp. 611—621.

    Article  CAS  Google Scholar 

  22. Schulman, A.H., IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protoc., 2006, vol. 1, no. 5, p. 2478.

    Article  Google Scholar 

  23. De-Lin, Wang, Xiao-Ying, Xiao-Hong, et al., Effects of back fat, growth rate, and age at first mating on Yorkshire and Landrace sow longevity in China, J. Integr. Agric., 2016, vol. 15, no. 12, pp. 2809—2818.

    Article  Google Scholar 

  24. Kalendar, R., Flavell, A.J., Ellis, T.H., et al., Analysis of plant diversity with retrotransposon-based molecular markers, Heredity (Edinbourgh), 2010, vol. 106, no. 4, p. 520.

    Article  Google Scholar 

  25. Jing, R., Vershinin, A., Grzebyta, J., et al., The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis, BMC Evol. Biol., 2010, vol. 10, no. 1, p. 44.

    Article  Google Scholar 

  26. Mandoulakani, B.A., Piri, Y., Darvishzadeh, R., et al., Retroelement insertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers, Plant Mol. Biol. Rep., 2012, vol. 30, no. 2, pp. 286—296.

    Article  Google Scholar 

  27. Tam, S.M., Mhiri, C., Vogelaar, A., et al., Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR, Theor. Appl. Genet., 2005, vol. 110, no. 5, pp. 819—831.

    Article  CAS  Google Scholar 

  28. Yamashita, H. and Tahara, M., A LINE-type retrotransposon active in meristem stem cells causes heritable transpositions in the sweet potato genome, Plant Mol. Biol., 2006, vol. 61, nos. 1—2, pp. 79—84.

    Article  CAS  Google Scholar 

  29. Chessa, B., Kao, R., and Palmarini, M., Revealing the History of Sheep Domestication Using Retrovirus Integrations, 2009.

  30. Kamath, P.L., Elleder, D., Bao, L., et al., The population history of endogenous retroviruses in mule deer (Odocoileus hemionus), J. Hered., 2014, vol. 105, no. 2, p. 173.

    Article  CAS  Google Scholar 

  31. Lee, J., Mun, S., Kim, D.H., et al., Chicken (Gallus gallus) endogenous retrovirus generates genomic variations in the chicken genome, Mob. DNA, 2017, vol. 8, no. 1, p. 2.

    Article  Google Scholar 

  32. Levin, H.L. and Moran, J.V., Dynamic interactions between transposable elements and their hosts, Nat. Rev. Genet., 2011, vol. 12, no. 9, pp. 615—627.

    Article  CAS  Google Scholar 

  33. Sironen, A., Vilkki, J., Bendixen, C., et al., Infertile Finnish Yorkshire boars carry a full-length LINE-1 retrotransposon within the KPL2 gene, Mol. Genet. Genomics, 2007, vol. 278, no. 4, pp. 385—391.

    Article  CAS  Google Scholar 

  34. Mikawa, S., Sato, S., Nii, M., et al., Identification of a second gene associated with variation in vertebral number in domestic pigs, BMC Genet., 2011, vol. 12, no. 1, p. 5.

    Article  CAS  Google Scholar 

  35. Hedlund, M., Ng, E., Varki, A., and Varki, N.M., Alpha 2-6-linked sialic acids on N-glycans modulate carcinoma differentiation in vivo, Cancer Res., 2008, vol. 68, no. 2, p. 388.

    Article  CAS  Google Scholar 

  36. Wang, Y.C., Stein, J.W., Lynch, C.L., et al., Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells, Sci. Rep., 2015, vol. 5, p. 13317.

    Article  CAS  Google Scholar 

  37. Wanichnopparat, W., Suwanwongse, K., Pin-On, P., et al., Genes associated with the cis-regulatory functions of intragenic LINE-1 elements, BMC Genomics, 2013, vol. 14, no. 1, p. 205.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (31572364 and 31872977); the Priority Academic Program Development of Jiangsu Higher Education Institutions; the National Development and Reform Commission Special Breeding Projects; and the Postgraduate Research and Practical Innovation Program of Jiangsu Province (XKYCX17_058).

Author information

Authors and Affiliations

Authors

Contributions

W. Wang and C. Chen have contributed equally to this work.

Corresponding author

Correspondence to C. Song.

Ethics declarations

Conflict of interest. The authors declare no competing financial interests.

Statement on the welfare of animals. Animal care and use was approved by the University of Yangzhou Animal Care and Use Committee.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, C., Wang, X. et al. Development of Molecular Markers Based on the L1 Retrotransposon Insertion Polymorphisms in Pigs (Sus scrofa) and Their Association with Economic Traits. Russ J Genet 56, 183–191 (2020). https://doi.org/10.1134/S1022795420020131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420020131

Keywords:

Navigation