Skip to main content
Log in

The Growth of Transgenic Tobacco Plants with Estradiol-Induced Expression of Tomato Xyloglucan Endotransglucosylase Gene tXET-B2 under Stress Conditions

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The role of xyloglucan endotransglycosylases in the regulation and promotion of plant growth in response to such widespread stress factors as drought, salinization, and hypothermia remains poorly understood. The tXET-B2 (SlXTH10) gene encodes one of the xyloglucan endotransglycosylases of tomato, which is most closely related in the nucleotide sequence to the AtXTH15 and AtXTH16 genes of Arabidopsis thaliana. At present, the specific functions of the tXET-B2 gene, as well as of its homologs, AtXTH15 and AtXTH16, remain obscure. To study the role of tXET-B2 in the regulation of growth and adaptation to abiotic stress factors, transgenic tobacco plants with estradiol-inducible expression of the tomato tXET-B2 gene were generated. Overexpression of this gene promoted tobacco root growth in a medium containing 50 mM NaCl. Under drought conditions, exogenous treatment with estradiol resulted in a considerable increase in fresh and dry weight in many of the studied transgenic lines. Under normal conditions, as well as under salinization and hypothermia stress, such positive effect was detected only for some transgenic lines. The obtained data point to the possibility of using genetically engineered constructs of the tXET-B2 gene to correct growth parameters of transgenic plants under the influence of stress factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorshkova, T.A., Nikolovski, N., and Finaev, D.N., Plant cell wall is a stumbling stone for molecular biologists, Russ. J. Plant Physiol., 2005, vol. 52, pp. 392–409. doi 10.1007/s11183-005-0059-9

    Article  CAS  Google Scholar 

  2. Cosgrove, D.J., Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement, Plant Cell, 1997, vol. 9, pp. 1031–1041. doi 10.1105/tpc.9.7.1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Inouhe, M. and Nevins, D., Regulation of cell wall glucanase activities by non-enzymic proteins in maize coleoptiles, Int. J. Biol. Macromol., 1997, pp. 15–20. doi 10.1016/S0141-8130(97)00035-4

    Google Scholar 

  4. Thomas, B.R., Inouhe, M., Simmons, C.R., and Nevins, D.J., Endo-1,3;1,4-3-glucanase from coleoptiles of rice and maize: role in the regulation of plant growth, Int. J. Biol. Macromol., 2000, vol. 27, pp. 145–149.

    Article  CAS  PubMed  Google Scholar 

  5. Nishitani, K. and Tominaga, R., Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule, J. Biol. Chem., 1992, vol. 267, pp. 21058–21064.

    CAS  PubMed  Google Scholar 

  6. McQueen-Mason, S., Durachko, D., and Cosgrove, D., Two endogenous proteins that induce cell wall extension in plants, Plant Cell, 1992, vol. 4, pp. 1425–1433. doi 10.1105/tpc.4.11.1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, R.C. and Fry, S.C., Endotransglycosylation of xyloglucans in plant cell suspension cultures, Biochem. J., 1991, vol. 15, pp. 529–535. doi 10.1042/bj2790529

    Article  Google Scholar 

  8. Nishitani, K. and Tominaga, R., In vitro molecular weight increase in xyloglucan by an apoplastic enzyme preparation from epicotyls of Vigna angularis, Physiol. Plant., 1991, vol. 82, pp. 490–497. doi 10.1111/j.1399-3054.1991.tb02937.x

    Article  CAS  Google Scholar 

  9. Rose, J.K.C., Braam, J., Fry, S.C., and Nishitani, K., The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature, Plant Cell Physiol., 2002, vol. 43, pp. 1421–1435. doi 10.1093/pcp/pcf171

    Article  CAS  PubMed  Google Scholar 

  10. Miedes, E., Zarra, I., Hoson, T., et al., Xyloglucan endotransglycosylase and cell wall extensibility, J. Plant Physiol., 2011, vol. 168, pp. 196–203. doi 10.1016/j.jplph.2010.06.029

    Article  CAS  PubMed  Google Scholar 

  11. Chen, F., Nonogaki, H., and Bradford, K.J., A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination, J. Exp. Bot., 2002, vol. 53, pp. 215–223. doi 10.1093/jexbot/53.367.215

    Article  CAS  PubMed  Google Scholar 

  12. Catala, C., Rose, J.K.C., and Bennett, A.B., Auxinregulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth, Plant Physiol., 2000, vol. 122, pp. 527–534. doi 10.1104/pp.122.2.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi, J.Y., Seo, Y.S., Kim, S.J., et al., Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang), Plant Cell Rep., 2011, vol. 30, pp. 867–877. doi 10.1007/s00299-010-0989-3

    Article  CAS  PubMed  Google Scholar 

  14. Kuluev, B.R., Mikhaylova, E.V., Berezhneva, Z.A., et al., Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response, Plant Physiol. Biochem., 2017, vol. 111, pp. 203–215. doi 10.1016/j.plaphy.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  15. Aoyama, T. and Chua, N.H., A glucocorticoid-mediated transcriptional induction system in transgenic plants, Plant J., 1997, vol. 11, pp. 605–612. doi 10.1046/j.1365-313X.1997.11030605.x

    Article  CAS  PubMed  Google Scholar 

  16. Zuo, J., Niu, Q.W., and Chua, N.H., Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants, Plant J., 2000, vol. 24, pp. 265–273. doi 10.1046/j.1365-313x.2000.00868.x

    Article  CAS  PubMed  Google Scholar 

  17. Arrowsmith, D.A. and de Silva, J., Characterization of two tomato fruit-expressed cDNAs encoding xyloglucan endo-transglycosylase, Plant Mol. Biol., 1995, vol. 28, pp. 391–403. doi 10.1007/BF00020389

    Article  CAS  PubMed  Google Scholar 

  18. Kuluev, B.R., Knyazev, A.V., Nikonorov, Yu.M., and Chemeris, A.V., Estradiol inducible and flower-specific expression of ARGOS and ARGOS-LIKE genes in transgenic tobacco plants, Russ. J. Genet., 2014, vol. 50, pp. 807–817. doi 10.1134/S1022795414070102

    Article  CAS  Google Scholar 

  19. Kuluev, B.R., Safiullina, M.G., Knyazev, A.V., and Chemeris, A.V., Morphological analysis of transgenic tobacco plants expressing the PnEXPA3 gene of black poplar (Populus nigra), Russ. J. Dev. Biol., 2013, vol. 44, pp. 129–134. doi 10.1134/S106236041303003X

    Article  CAS  Google Scholar 

  20. Saladie, M., Rose, J.K., Cosgrove, D.J., and Catala, C., Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action, Plant J., 2006, vol. 47, pp. 282–295.

    Article  CAS  PubMed  Google Scholar 

  21. Shi, Y.Z., Zhu, X.F., Miller, J.G., et al., Distinct catalytic capacities of two aluminium-repressed Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in Pichia, Phytochemistry, 2015, vol. 112, pp. 160–169. doi 10.1016/j.phytochem.2014.09.020

    CAS  PubMed  Google Scholar 

  22. Han, Y., Li, A., Li, F., et al., Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation, Plant Physiol. Biochem., 2012, vol. 54, pp. 49–58. doi 10.1016/j.plaphy.2012.02.007

    CAS  PubMed  Google Scholar 

  23. Kuluev, B.R. and Safiullina, M.G., Regulation of cell growth by stretching in plants, Usp. Sovrem. Biol., 2015, vol. 135, no. 2, pp. 148–163.

    Google Scholar 

  24. Balnokin, Yu.V., Plants under stress, in Fiziologiya rastenii (Plant Physiology), Ermakov, I.P., Ed., Moscow: Akademiya, 2007, pp. 510–587.

    Google Scholar 

  25. Koshkin, E.I., Fiziologiya ustoichivosti sel’skokhozyaistvennykh kul’tur (Physiology of Resistance of Agricultural Crops), Moscow: Drofa, 2010.

    Google Scholar 

  26. Gao, X., Liu, K., and Lu, Y.T., Specific roles of AtEXPA1 in plant growth and stress adaptation, Russ. J. Plant Physiol., 2010, vol. 57, pp. 241–246. doi 10.1134/S1021443710020111

    Article  CAS  Google Scholar 

  27. Zhao, M.R., Li, F., Fang, Y., et al., Expansin-regulated cell elongation is involved in the drought tolerance in wheat, Protoplasma, 2011, vol. 248, pp. 313–323. doi 10.1007/s00709-010-0172-2

    Article  PubMed  Google Scholar 

  28. Kuluev, B.R., Knyazev, A.V., Lebedev, Ya.P., et al., Construction of hybrid promoters of caulimoviruses and analysis of their activity in transgenic plants, Russ. J. Plant Physiol., 2010, vol. 57, pp. 582–589. doi 10.1134/S1021443710040187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Berezhneva.

Additional information

Original Russian Text © Z.A. Berezhneva, E.V. Mikhaylova, B.R. Kuluev, 2018, published in Genetika, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezhneva, Z.A., Mikhaylova, E.V. & Kuluev, B.R. The Growth of Transgenic Tobacco Plants with Estradiol-Induced Expression of Tomato Xyloglucan Endotransglucosylase Gene tXET-B2 under Stress Conditions. Russ J Genet 54, 431–441 (2018). https://doi.org/10.1134/S102279541804004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541804004X

Keywords

Navigation