Skip to main content
Log in

The role of expansin genes PtrEXPA3 and PnEXPA3 in the regulation of leaf growth in poplar

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genes of α-expansins of woody plants are of great interest for genetic engineering, since they can potentially be used to improve the tree growth parameters. In the flora of Russia, model woody plants for plant biotechnology are aspen (Populus tremula L.) and black poplar (Populus nigra L.). The objective of this study was to determine the role of α-expansin-encoding genes, aspen PtrEXPA3 and black poplar PnEXPA3, in the regulation and maintenance of woody plant growth. To achieve this goal, the PtrEXPA3 expression level were determined upon exogenous phytohormone treatment, the action of stress factors, and constitutive expression of the PnARGOS-LIKE gene. In addition, transgenic aspen plants with constitutive expression of the black poplar PnEXPA3 gene were generated, and their morphological analysis was carried out. The highest PtrEXPA3 mRNA level was detected in young intensely growing aspen leaves, and furthermore, expression of the gene was induced by exogenous cytokinins and auxins. In response to NaCl and constitutive expression of the PnARGOS-LIKE gene, the PtrEXPA3 mRNA level decreased. Transgenic aspen plants with constitutive PnEXPA3 expression were characterized by the decreased size of leaves, petioles, and internodes, as well as the increased size of leaf epidermal cells, while the stem size remained unchanged. Taken together, the data obtained enable the suggestion that the PtrEXPA3 and PnEXPA3 genes encode cytokinin- and auxin-regulated, leaf-specific expansins that are involved in the cell expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McQueen-Mason, S., Durachko, D.M., and Cosgrove, D.J., Two endogenous proteins that induce cell wall extension in plants, Plant Cell, 1992, vol. 4, pp. 1425–1433. doi 10.2307/3869513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sampedro, J. and Cosgrove, D.J., The expansin superfamily, Genome Biol., 2005, vol. 6, pp. 242.1—242.11. doi 10.1186/gb-2005-6-12-242

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cosgrove, D.J., Plant expansins: diversity and interactions with plant cell walls, Curr. Opin. Plant Biol., 2015, vol. 25, pp. 162–172. doi 10.1016/j.pbi.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marowa, P., Ding, A., and Kong, Y., Expansins: roles in plant growth and potential applications in crop improvement, Plant Cell Rep., 2016, vol. 35, pp. 949–965. doi 10.1007/s00299-016-1948-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, Y. and Kende, H., Expression of beta-expansins is correlated with internodal elongation in deepwater rice, Plant Physiol., 2001, vol. 127, pp. 645–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho, H.T. and Cosgrove, D.J., Expansins as agents in hormone action in Plant Hormones: Biosynthesis, Signal Transduction, Action!, Davies, P.J., Ed., Dordrecht: Kluwer, 2004, pp. 262–281.

    Google Scholar 

  7. Jung, J., O’Donoghue, E.M., and Dijkwel, P.P., Expression of multiple expansin genes is associated with cell expansion in potato organs, Plant Sci., 2010, vol. 179, pp. 77–85. doi 10.1016/j.plantsci.2010.04.007

    Article  CAS  Google Scholar 

  8. Kuluev, B.R., Knyazev, A.V., Nikonorov, Yu.M., and Chemeris, A.V., Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth, Russ. J. Genet., 2014, vol. 50, no. 5, pp. 489–497. doi 10.1134/S1022795414040061

    Article  CAS  Google Scholar 

  9. Li, X., Zhao, J., Walk, T.C., and Liao, H., Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 2805–2817. doi 10.1007/s00253-013-5240-z

    Article  CAS  PubMed  Google Scholar 

  10. Park, C.H., Kim, T.W., and Son, S.H., Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana, Phytochemistry, 2010, vol. 71, pp. 380–387. doi 10.1016/j.phytochem.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  11. Azeez, A., Sane, A.P., Tripathi, S.K., et al., The gladiolus GgEXPA1 is a GA-responsive alpha-expansin gene expressed ubiquitously during expansion of all floral tissues and leaves but repressed during organ senescence, Postharvest Biol. Technol., 2010, vol. 58, pp. 48–56. doi 10.1016/j.postharvbio.2010.05.006

    Article  CAS  Google Scholar 

  12. Qin, Z., Zhang, X., Zhang, X., et al., The Arabidopsis ORGAN SIZE RELATED 2 is involved in regulation of cell expansion during organ growth, BMC Plant Biol., 2014, vol. 14. doi 10.1186/s12870-014-0349-5

    Google Scholar 

  13. Feng, G., Qin, Z., Yan, J., et al., Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL, New Phytol., 2011, vol. 191, pp. 635–646. doi 10.1111/j.1469-8137.2011.03710.x

    Article  CAS  PubMed  Google Scholar 

  14. Wang, B., Zhou, X., Xu, F., and Gao, J., Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size, Transgenic Res., 2010, vol. 19, pp. 461–472. doi 10.1007/s11248-009-9324-6

    Article  CAS  PubMed  Google Scholar 

  15. Han, Y., Li, A., Li, F., et al., Characterization of a wheat (Triticum aestivum) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation, Plant Physiol. Biochem., 2012, vol. 54, pp. 49–58. doi 10.1016/j.plaphy.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Lu, P., Kang, M., and Jiang, X., RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis, Planta, 2013, vol. 237, pp. 1547–1559. doi 10.1007/s00425-013-1867-3

    Article  PubMed  Google Scholar 

  17. Zhao, M.R., Li, F., Fang, Y., et al., Expansin-regulated cell elongation is involved in the drought tolerance in wheat, Protoplasma, 2011, vol. 248, pp. 313–323. doi 10.1007/s00709-010-0172-2

    Article  PubMed  Google Scholar 

  18. Xu, Q., Xu, X., Shi, Y., et al., Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress, PLoS One, 2014, vol. 8, e100792. doi 10.1371/journal.pone.0100792

    Article  Google Scholar 

  19. Zorb, C., Muhling, K.H., Kutschera, U., and Geilfus, C.M., Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growthrestricting?, PLoS One, 2015, vol. 10, e0118406. doi 10.1371/journal.pone.0118406

    Google Scholar 

  20. Kwon, Y.R., Lee, H.J., Kim, K.H., et al., Ectopic expression of Expansin3 or Expansin β 1 causes enhanced hormone and salt stress sensitivity in Arabidopsis, Biotechnol. Lett., 2008, vol. 30, pp. 1281–1288. doi 10.1007/s10529-008-9678-5

    Article  CAS  PubMed  Google Scholar 

  21. Tuskan, G.A., Difazio, S., Jansson, S., et al., The genome of black cottonwood, Populus trichocarpa (Torr. and Gray), Science, 2006, vol. 313, pp. 1596–1604.

    Article  CAS  PubMed  Google Scholar 

  22. Kuluev, B.R., Safiullina, M.G., Knyazev, A.V., and Chemeris, A.V., Morphological analysis of transgenic tobacco plants expressing the PnEXPA3 gene of black poplar (Populus nigra), Russ. J. Dev. Biol., 2013, vol. 44, no. 3, pp. 129–134. doi 10.1134/S106236041303003X

    Article  CAS  Google Scholar 

  23. Kuluev, B.R., Knyazev, A.V., Mikhaylova, E.V., et al., The poplar ARGOS-LIKE gene promotes leaf initiation and cell expansion, and controls organ size, Biol. Plant., 2016, vol. 60, pp. 513–522. doi 10.1007/s10535-016-0610-x

    Article  CAS  Google Scholar 

  24. Kuluev, B.R., Knyazev, A.V., Lebedev, Ya.P., et al., Construction of hybrid promoters of caulimoviruses and analysis of their activity in transgenic plants, Russ. J. Plant Physiol., 2010, vol. 57, no. 4, pp. 582–589. doi 10.1134/S1021443710040187

    Article  CAS  Google Scholar 

  25. Xu, M., Zang, V., Yao, H.S., and Huang, M.R., Isolation of high quality RNA and molecular manipulations with various tissues of Populus, Russ. J. Plant Physiol., 2009, vol. 56, no. 5, pp. 716–719. doi 10.1134/S1021443709050197

    Article  CAS  Google Scholar 

  26. Wang, Y., Chen, Y., Ding, L., et al., Validation of reference genes for gene expression by quantitative real-time RT-PCR in stem segments spanning primary to secondary growth in Populus tomentosa, PLoS One, 2016, vol. 14, e0157370. doi 10.1371/journal.pone.0157370

    Article  Google Scholar 

  27. Zheng, M., Wang, Y., and Liu, K., Protein expression changes during cotton fiber elongation in response to low temperature stress, J. Plant Physiol., 2012, vol. 169, pp. 399–409. doi 10.1016/j.jplph.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  28. Zorb, C., Geilfus, C.M., Muhling, K.H., and Ludwig-Muller, J., The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance, J. Plant Physiol., 2013, vol. 170, pp. 220–224. doi 10.1016/j.jplph.2012.09.012

    Article  PubMed  Google Scholar 

  29. Gray-Mitsumune, M., Mellerovicz, E.J., Abe, H., et al., Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family, Plant Physiol., 2004, vol. 135, pp. 1552–1564. doi 10.1104/pp.104.039321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho, H.T. and Cosgrove, D.J., Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 9783–9788. doi 10.1073/pnas. 160276997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuluev, B.R., Avalbaev, A.M., Mikhaylova, E.V., et al., Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response, J. Plant Physiol., 2016, vol. 206, pp. 1–12. http://dx.doi.org/. doi 10.1016/j.jplph.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  32. Gao, X., Liu, K., and Lu, Y.T., Specific roles of AtEXPA1 in plant growth and stress adaptation, Russ. J. Plant Physiol., 2010, vol. 57, pp. 241–246. doi 10.1134/S1021443710020111

    Article  CAS  Google Scholar 

  33. Fleming, A.J., McQueen-Mason, S., Mandel, T., and Kuhlemeier, C., Induction of leaf primordia by the cell wall protein expansin, Science, 1997, vol. 276, pp. 1415–1418. doi 10.1126/science.276.5317.1415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Kuluev.

Additional information

Original Russian Text © B.R. Kuluev, A.V. Knyazev, E.V. Mikhaylova, A.V. Chemeris, 2017, published in Genetika, 2017, Vol. 53, No. 6, pp. 663–674.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuluev, B.R., Knyazev, A.V., Mikhaylova, E.V. et al. The role of expansin genes PtrEXPA3 and PnEXPA3 in the regulation of leaf growth in poplar. Russ J Genet 53, 651–660 (2017). https://doi.org/10.1134/S1022795417060084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417060084

Keywords

Navigation