Skip to main content

Advertisement

Log in

Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a common and economically important crop in Asia. Specific targets of plant breeding programs for cabbage have been improvement in yield, resistance to environment stresses, and nutrition quality by means of genetic manipulation. To obtain information on yield improvement applicable for the genetic engineering approach, we have attempted to dissect the molecular pathways that regulate organ size. We first isolated a putative homolog of ARGOS full-length cDNA from Chinese cabbage leaves, which we designated BrARGOS. At the transcription level, BrARGOS was detected in all organs tested in Chinese cabbage. To test the function of this gene, we then engineered Arabidopsis plants that would overexpress BrARGOS ectopically. The organs of the transgenic Arabidopsis plants were significantly larger than those of the control plants. This increase in size was due to enhanced cell proliferation, with no contribution from cell expansion. The molecular analysis revealed that overexpression of BrARGOS up-regulated the transcription of several genes involved in the control of organ size. These results suggest that the BrARGOS gene may function as one of the regulators of organ size in Chinese cabbage. As such, manipulation of the BrARGOS gene may significantly increase the size of Chinese cabbage organs, such as Chinese cabbage heads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ahk2 :

Arabidopsis histidine kinase2

ahk3 :

Arabidopsis histidine kinase3

ahk4 :

Arabidopsis histidine kinase4

AN3/GIF1:

Angustifolias/grf-interacting factor1

ANT :

Aintegumenta

ARF2 :

Auxin response factor2

ARGOS :

Auxin-regulated gene involved in organ size

ARL :

ARGOS-like

AtANT :

Arabidopsis thaliana aintegumenta

AtEXP10 :

Arabidopsis thaliana expansin-10

AtGRF1 :

Arabidopsis thaliana growth regulating factor1

AtGRF5 :

Arabidopsis thaliana growth regulating factor5

BPE :

Bigpetal

REV/IFL1:

Revoluta/interfascicular fiberless1

RON2/LUG:

Rotunda2/leunig

ROT3 :

Rotundifolia3

rot4-1D:

Rotundifolia4-1D

References

  • Anastasiou E, Lenhard M (2008) Control of plant organ size. In: Bögre L, Beemster GTS (eds) Plant growth signaling. Springer, Berlin, pp 25–45

    Chapter  Google Scholar 

  • Autran D, Jonak C, Belcram K, Beemster GTS, Kronenberger J, Grandiean O, Inzé D, Traas J (2002) Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J 21:6036–6049

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Bereterbide A, Hernould M, Castera S, Mouras A (2001) Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants. Planta 214:22–29

    Article  CAS  PubMed  Google Scholar 

  • Cho HT, Cosgrove DJ (2000) Altered expression of expansion modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:9783–9788

    Article  CAS  PubMed  Google Scholar 

  • Cnops G, Jover-Gil S, Peters JL, Neyt P, De Block S, Robles P, Ponce MR, Gerats T, Micol JL, Van Lijsebettens M (2004) The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. J Exp Bot 55:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ (1995) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  • Day SJ, Lawrence PA (2000) Measuring dimensions: the regulation of size and shape. Development 127:2977–2987

    CAS  PubMed  Google Scholar 

  • Dewitte W, Riou-Khamlichi C, Scofield S, Healy JMS, Jacqmard A, Kilby NJ, Murray JAH (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the d-type cyclin CYCD3. Plant Cell 15:79–92

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    Article  CAS  PubMed  Google Scholar 

  • Hu YX, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961

    Article  CAS  PubMed  Google Scholar 

  • Hu YX, Poh HM, Chua NH (2006) The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J 47:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulated leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101:13374–13379

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12:2381–2391

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Tsukaya H, Saito Y, Uchimiya H (1999) Change in the shape of leaves and flowers upon overexpression of cytochrome p450 in Arabidopsis. Proc Natl Acad Sci USA 96:9433–9437

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 21:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Chi D, Kenda H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  PubMed  Google Scholar 

  • Kozuka T, Horiguchi G, Kim GT, Ohgishi M, Sakai T, Tsukaya T (2005) The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar. Plant Cell Physiol 46:213–223

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4:533–539

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Google Scholar 

  • Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H, Goodrich J, Tsukaya H (2004) Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J 38:699–713

    Article  CAS  PubMed  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possesses overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  CAS  PubMed  Google Scholar 

  • Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S (2005) ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol 139:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  CAS  PubMed  Google Scholar 

  • Shibaoka H, Nagai R (1994) The plant cytoskeleton. Curr Opin Cell Biol 6:10–15

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto-Shirasu K, Roberts GR, Stacey NJ, McCann MC, Maxwell A, Roberts K (2005) RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy-dependent cell growth. Proc Natl Acad Sci USA 102:18736–18741

    Article  CAS  PubMed  Google Scholar 

  • Szecsi J, Joly C, Bordji K, Varaud E, Cock JM, Dumas C, Bendahmane M (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J 25:3912–3920

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Adler HT, Parks DW, Comai L (1995) The REVOLUTA gene is necessary for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121:2723–2735

    CAS  PubMed  Google Scholar 

  • Thingnaes E, Torre S, Ernstsen A, Moe R (2003) Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann Bot 92:601–612

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122:1589–1600

    CAS  PubMed  Google Scholar 

  • Vernoux T, Autran D, Traas J (2000) Developmental control of cell division pattern in the shoot apex. Plant Mol Biol 43:569–581

    Article  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Neumann G, Bangerth F, Engels C (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot 51:227–237

    Article  CAS  PubMed  Google Scholar 

  • Zhang YD, Wang ZY, Zhang LD, Cao YF, Huang DF, Tang KX (2006) Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa ssp. pekinensis). J Plant Physiol 163:968–978

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH (1999) IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis encodes a homeodomain-leucine zipper protein. Plant Cell 11:2139–2152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yujing Li at Emory University and Yongfeng Guo at University of Michigan for critical reading of the manuscript. This research was supported by the Special Prophase Project on the National Basic Research Program of China (973 Project, grant no. 2009CB12600) and the High-tech Independent Innovation Foundation (grant no. 2007YCX003) of Shandong Academy of Agricultural Sciences, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Zhou, X., Xu, F. et al. Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size. Transgenic Res 19, 461–472 (2010). https://doi.org/10.1007/s11248-009-9324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9324-6

Keywords

Navigation