Skip to main content
Log in

Comparative analysis of the effectiveness of STR and SNP markers for intraspecific and interspecific differentiation of the genus Ovis

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A comparative study of the informativeness of SNP and STR markers for interspecific and intraspecific differentiation of the two species of the genus Ovis, snow sheep (O. nivicola) and domestic sheep (O. aries), was conducted. Eleven STR loci combined into two multiplex panels were examined. SNP analysis was performed with the DNA microarray OvineSNP50K BeadChip featuring 54241 SNPs. The possibility of clear differentiation of the studied Ovis species with both types of genetic markers was demonstrated. The advantages of SNP markers for intraspecific differentiation of the O. aries breeds and O. nivicola geographical groups were revealed. The areas of application of the studied types of DNA markers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khlestkina, E.K., Molecular markers in genetic studies and breeding, Russ. J. Genet.: Appl. Res., 2014, vol. 4 no. 2, pp. 236–244.

    Article  Google Scholar 

  2. Putman, A.I. and Carbone, I., Challenges in analysis and interpretation of microsatellite data for population genetic studies, Ecol. Evol., 2014, vol. 4, no. 22, pp. 4399–4428.

    PubMed  PubMed Central  Google Scholar 

  3. Haasl, R.J. and Payseur, B.A., Multi-locus inference of population structure: a comparison between single nucleotide polymorphisms and microsatellites, J. Hered., 2011, vol. 106, pp. 158–171. doi 10.1038/hdy.2010.21

    Article  CAS  Google Scholar 

  4. Smaragdov, M.G., Genomic selection as a possible accelerator of traditional selection, Russ. J. Genet., 2009, vol. 45, no. 6, pp. 633–636.

    Article  CAS  Google Scholar 

  5. Kijas, J.W., Townley, D., Dalrymple, B.P., et al., A genome wide survey of SNP variation reveals the genetic structure of sheep breeds, PLoS One, 2009, vol. 4, no. 3. e4668. doi l0.1371/journal.pone.0004668

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morin, P.A., Luikart, G., and Wayne, R.K., The SNP workshop group: SNPs in ecology, evolution and conservation, Trends Ecol. Evol., 2004, vol. 19, pp. 208–216.

    Article  Google Scholar 

  7. Vignal, A., Milan, D., Sancristobal, M., and Eggen, A., A review on SNP and other types of molecular markers and their use in animal genetics, Genet. Sel. Evol., 2002, vol. 34, pp. 275–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schopen, G.C.B., Bovenhuis, H., Visker, M.H.P.W., and van Arendonk, J.A.M., Comparison of information content for microsatellites and SNPs in poultry and cattle, Anim. Gen., 2008, vol. 39, pp. 451–453. doi 10.1111/j.1365-2052.2008.01736.x

    Article  CAS  Google Scholar 

  9. Gärke C., Ytournel, F. Bed’hom, B., et al., Comparison of SNPs and microsatellites for assessing the genetic structure of chicken populations, Anim. Gen., 2011, vol. 43, pp. 419–428. doi 10.1111/j.1365-2052.2011. 02284.x

    Article  Google Scholar 

  10. Herraeza, D.L., Schafer, H., Mosner, J., Fries, H. R., and Wink, M., Comparison of microsatellite and single nucleotide polymorphism markers for the genetic analysis of a Galloway cattle population, J. Biosci., 2005, vol. 60, pp. 637–643.

    Google Scholar 

  11. Fernández, M.E., Goszczynski, D.E., Lirón, J.P., et al., Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd, Genet. Mol. Biol., 2013, vol. 36, no. 2, pp. 185–191.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coates, B.S., Sumerford, D.V., Miller, N.J., et al., Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis, J. Hered., 2009, vol. 100, no. 5, pp. 556–564. doi 10.1093/jhered/esp028

    Article  CAS  PubMed  Google Scholar 

  13. Seeb, J.E., Carvalho, G., Hauser, L., et al., Singlenucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms, Mol. Ecol. Res., 2011, vol. 11, no. 1, pp. 1–8.

    Article  Google Scholar 

  14. Tokarska, M., Marshall, T., Kowalczyk, R., et al., Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison, J. Hered., 2009, vol. 103, pp. 326–332. doi 10.1038/hdy.2009.73

    Article  CAS  Google Scholar 

  15. Haynes, G.D. and Latch, E.K., Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip, PLoS One, 2012, vol. 7, no. 5. e36536. doi 10.1371/journal.pone.0036536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller, J.M., Poissant, J., Kijas, J.W., et al., A genomewide set of SNPs detects population substructure and long-range linkage disequilibrium in wild sheep, Mol. Ecol. Res., 2011, vol. 11, no. 2, pp. 314–322. doi 10.1111/j.1755-0998.2010.02918.x

    Article  CAS  Google Scholar 

  17. Miller, J.M., Kijas, J.W., Heaton, M.P., et al., Consistent divergence times and allele sharing measured from cross-species application of SNP chips developed for three domestic species, Mol. Ecol. Res., 2012, no. 12, pp. 1145–1150.

    Article  CAS  Google Scholar 

  18. Peakall, R., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, no. 6, pp. 288–295.

    Article  Google Scholar 

  19. Purcell, S., Neale, B., Todd-Brown, K., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Genet., 2007, vol. 81, pp. 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R Development Core Team, R: A language and environment for statistical computing, Vienna: R Foundation for Statistical Computing, 2009. http://www.Rproject.org

  21. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Alexander, D.H., Novembre, J., and Lange, K., Fast model-based estimation of ancestry in unrelated individuals, Genome Res., 2009, vol. 19, pp. 1655–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nasibov, Sh.N., Bagirov, V.A., Klenovitskii, P.M., et al., Conservation and management of the gene pool of the bighorn sheep, Dostizh. Nauki Tekh. Agrar. Prom. Kompleksa, 2010, no. 12, pp. 63–64.

    Google Scholar 

  24. Plakhina, D.A., Zvychainaya, E.Yu., Kholodova, M.V., and Danilkin, A.A., Identification of European (Capreolus capreolus L.) and Siberian (C. pygargus Pall.) roe deer hybrids by microsatellite marker analysis, Russ. J. Genet., 2014, vol. 50, no. 7, pp. 757–762.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Deniskova.

Additional information

Original Russian Text © T.E. Deniskova, A.A. Sermyagin, V.A. Bagirov, I.M. Okhlopkov, E.A. Gladyr, R.V. Ivanov, G. Brem, N.A. Zinovieva, 2016, published in Genetika, 2016, Vol. 52, No. 1, pp. 90–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniskova, T.E., Sermyagin, A.A., Bagirov, V.A. et al. Comparative analysis of the effectiveness of STR and SNP markers for intraspecific and interspecific differentiation of the genus Ovis . Russ J Genet 52, 79–84 (2016). https://doi.org/10.1134/S1022795416010026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416010026

Keywords

Navigation