Skip to main content
Log in

From population genetics to population genomics of forest trees: Integrated population genomics approach

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Early works by Altukhov and his associates on pine and spruce laid the foundation for Russian population genetic studies on tree species with the use of molecular genetic markers. In recent years, these species have become especially popular as nontraditional eukaryotic models for population and evolutionary genome-wide research. Tree species with large, cross-pollinating native populations, high genetic and phenotypic variation, growing in diverse environments and affected by environmental changes during hundreds of years of their individual development, are an ideal model for studying the molecular genetic basis of adaptation. The great advance in this field is due to the rapid development of population genomics in the last few years. In the broad sense, population genomics is a novel, fast-developing discipline, combining traditional population genetic approaches with the genome-wide level of analysis. Thousands of genes with known function and sometimes known genome-wide localization can be simultaneously studied in many individuals. This opens new prospects for obtaining statistical estimates for a great number of genes and segregating elements. Mating system, gene exchange, reproductive population size, population disequilibrium, interaction among populations, and many other traditional problems of population genetics can be now studied using data on variation in many genes. Moreover, population genome-wide analysis allows one to distinguish factors that affect individual genes, allelles, or nucleotides (such as, for example, natural selection) from factors affecting the entire genome (e.g., demography). This paper presents a brief review of traditional methods of studying genetic variation in forest tree species and introduces a new, integrated population genomics approach. The main stages of the latter are: (1) selection of genes, which are tentatively involved in variation of adaptive traits, by means of a detailed examination of the regulation and the expression of individual genes and genotypes, with subsequent determination of their complete allelic composition by direct nucleotide sequencing; (2) examination of the phenotypic effects of individual alleles by, e.g., association mapping; and (3) determining the frequencies of the selected alleles in natural population for identification of the adaptive variation pattern in the heterogeneous environment. Through decoding the phenotypic effects of individual alleles and identification of adaptive variation patterns at the population level, population genomics in the future will serve as a very helpful, efficient, and economical tool, essential for developing a correct strategy for conserving and increasing forests and other commercially valuable plant and animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altukhov, Yu.P., On the Relationship between Mono-and Polymorphism of Hemoglobins in Fish Microevolution, Dokl. Akad. Nauk SSSR, 1969, vol. 189, no. 5, pp. 1115–1117.

    CAS  Google Scholar 

  2. Altukhov, Yu.P. and Rychkov, Yu.G., Genetic Monomorphism of the Species and Its Probable Biological Significance, Zh. Obshch. Biol., 1972, vol. 33, no. 3, pp. 281–300.

    PubMed  CAS  Google Scholar 

  3. Altukhov, Yu.P., Population Genetics: Diversity and Stability, London: Harwood Academic, 1990.

    Google Scholar 

  4. Altukhov, Yu.P., in Intraspecific Genetic Diversity: Monitoring, Conservation, and Management, Berlin: Springer, 2006, pp. 253–285.

    Google Scholar 

  5. Nielsen, R., Statistical Tests of Selective Neutrality in the Age of Genomics, Heredity, 2001, vol. 86, pp. 641–647.

    Article  PubMed  CAS  Google Scholar 

  6. Ford, M.J., Applications of Selective Neutrality Tests to Molecular Ecology, Mol. Ecol., 2002, vol. 11, pp. 1245–1262.

    Article  PubMed  CAS  Google Scholar 

  7. Bamshad, M. and Wooding, S.P., Signatures of Natural Selection in the Human Genome, Nat. Rev. Genet., 2003, vol. 4, no. 2, pp. 99–111.

    Article  PubMed  CAS  Google Scholar 

  8. Luikart, G., England, P., Tallmon, D., et al., The Power and Promise of Population Genomics: From Genotyping to Genome Typing, Nat. Rev. Genet., 2003, vol. 4, no. 12, pp. 981–994.

    Article  PubMed  CAS  Google Scholar 

  9. Ronald, J. and Akey, J.M., Genome-Wide Scans for Loci under Selection in Humans, Human Genomics, 2005, vol. 2, no. 2, pp. 113–125.

    PubMed  CAS  Google Scholar 

  10. Storz, J.F., Using Genome Scans of DNA Polymorphism to Infer Adaptive Population Divergence, Mol. Ecol., 2005, vol. 14, pp. 671–688.

    Article  PubMed  CAS  Google Scholar 

  11. Gonzalez-Martinez, S.C., Krutovsky, K.V., and Neale, D.B., Forest Tree Population Genomics and Adaptive Evolution, New Phytol., 2006, vol. 170, no. 2, pp. 227–238.

    Article  PubMed  Google Scholar 

  12. Krutovsky, K.V., Milishnikov, A.N., Gyulemetova, R.M., and Cholakova, N.I., Frequency of Induced Mutations in Allozyme Loci during Different Ontogenesis Stages of Drosorhila melanogaster, Genetika (Moscow), 1983, vol. 19, no. 6, pp. 1013–1019.

    Google Scholar 

  13. Krutovsky, K.V. and Milishnikov, A.N., Selection against Induced Mutations of Allozyme Loci of Drosorhila melanogaster, Genetika (Moscow), 1983, vol. 19, no. 9, pp. 1469–1475.

    Google Scholar 

  14. Krutovsky, K.V., Study of Recombination in Drosophila melanogaster Males during Hybrid Dysgenesis, Genetika (Moscow), 1983, vol. 19, no. 11, pp. 1439–1444.

    Google Scholar 

  15. Chadov, B.F., Podoplelova, M.L., and Krutovsky, K.V., Position of Non-Homological Chromosomes in Meiosis Prophase and Spontaneous Exchange between Them in Drosophila melanogaster Females, Genetika (Moscow), 1986, vol. 22, no. 5, pp. 793–800.

    Google Scholar 

  16. Glazko, V.I., Koval’, S.F., and Krutovsky, K.V., Effect of Different Selection Conditions on Relationships between Wheat Populations, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Biol., 1989, no. 3, pp. 56–58.

  17. Glazko, V.I., Koval’, S.F., and Krutovsky, K.V., Allele Frequency of Gluten Encoding Loci Depended on Selection Conditions, Dokl. Vses. Akad. Selskh. Nauk, 1989, no. 2, pp. 2–4.

  18. McDonald, J.H., Koehn, R.K., Balakiriev, E.S., et al., Species Identification of Edible Mytilus from Asian Part of Pacific Ocean, Russ. J. Mar. Biol., 1990, no. 1, pp. 13–22.

  19. Glazko, V.I. and Krutovsky, K.V., Study of Breed Formation Process in Sheep Using Multidimensional Analysis of Genetic and Morphologic Distances, Genetika (Moscow), 1991, vol. 27, no. 6, pp. 764–769.

    Google Scholar 

  20. Krutovsky, K.V. and Glazko, V.I., Study of Genetic Relationship between Purebred and Outcrossbred Groups of Sheep Using Multidimensional Analysis of Genetic Distances Based on Biochemical Traits, Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 3.

  21. Pravdin, L.F., Altukhov, Yu.P., Dukharev, V.A., et al., Polymorphism in Populations Scots Pine for the Linked Esterase Loci, Dokl. Akad. Nauk SSSR, Ser. Biol., 1982, vol. 262, pp. 998–1000.

    Google Scholar 

  22. Altukhov, Yu.P., Dukharev, V.A., and Zhivotovskii, L.A., Selection against Rare Electrophoretic Protein Variants and the Rate of Spontaneous Mutability in Populations, Genetika (Moscow), 1983, vol. 19, no. 2, pp. 200–210.

    Google Scholar 

  23. Altukhov, Yu.P., Krutovsky, K.V., Gafarov, N.I., et al., Allozyme Variability in Natural Populations of Norway Spruce (Picea abies (L.) Karst.) I. Polymorphic Systems and Mechanisms of Their Genetic Control, Genetika (Moscow), 1986, vol. 22, no. 8, pp. 1028–1040.

    Google Scholar 

  24. Krutovsky, K.V., Gafarov, N.I., Altukhov, Yu.P., and Dukharev, V.A., Allozyme Variability in Natural Populations of Norway Spruce (Picea abies (L.) Karst.) II. Frequency of Rare Alleles and de novo Mutations, Genetika (Moscow), 1986, vol. 22, no. 9, pp. 1163–1168.

    Google Scholar 

  25. Altukhov, Yu.P., Gafarov, N.I., Krutovsky, K.V., and Dukharev, V.A., Allozyme Variability in Natural Populations of Norway Spruce (Picea abies (L.) Karst.) III. Correlation between Levels of Individual Heterozygosity and Relative Number of Inviable Seeds, Genetika (Moscow), 1986, vol. 22, no. 12, pp. 1580–1585.

    Google Scholar 

  26. Krutovsky K V., Politov D.V., Altukhov Yu.P. Genetic Variability in Sibirian Stone Pine Pinus sibirica Du Tour. I. Genetic Control of Isozyme Systems, Genetika (Moscow), 1987, vol. 23, no. 12. pp. 1568–1576.

    Google Scholar 

  27. Krutovsky, K.V., Politov, D.V., and Altukhov, Yu.P., Genetic Variability in Sibirian Stone Pine Pinus sibirica Du Tour. II. Level of Allozyme Variability in Western Sayan, Genetika (Moscow), 1988, vol. 24, no. 1, pp. 81–86.

    Google Scholar 

  28. Krutovsky, K.V. and Politov, D.V., Allozyme Polymorphism in Natural Populations of Sibirian Stone Pine Pinus sibirica Du Tour., in Problemy molekulyarnoi i populyatsionnoi genetiki (Problems of Molecular and Population Genetics), Moscow: Nauka, 1988, pp. 49–55.

    Google Scholar 

  29. Politov, D.V., Krutovsky, K.V., and Altukhov, Yu.P., Genetic Variability in Sibirian Stone Pine Pinus sibirica Du Tour. III. Linkage Relationship among Isozyme Loci, Genetika (Moscow), 1989, vol. 25, no. 9, pp. 1053–1063.

    Google Scholar 

  30. Krutovsky, K.V., Politov, D.V., Altukhov, Yu.P., et al., Genetic Variability in Sibirian Stone Pine Pinus sibirica Du Tour. IV. Genetic Diversity and Differentiation between Populations, Genetika (Moscow), 1989, vol. 25, no. 11, pp. 1343–1362.

    Google Scholar 

  31. Altukhov, Yu.P., Krutovsky, K.V., Dukharev, V.A., et al., Biochemical Population Genetics of Wood Forest Species, Lesnaya genetika, selektsiya i fiziologiya drevesnykh rastenii (Forest Genetics, Breeding and Physiology of Woody Plants), (Proc. IUFRO Int. Symp., Voronezh, 1989), Moscow: Nauka, 1989, pp. 21–29.

    Google Scholar 

  32. Politov, D.V. and Krutovsky, K.V., Genetic Variability in Sibirian Stone Pine Pinus sibirica Du Tour. V. Analysis of Mating System, Genetika (Moscow), 1990, vol. 26, no. 11, pp. 1309–1316.

    Google Scholar 

  33. Krutovsky, K.V., Politov, D.V., and Altukhov, Yu.P., Interspecific Genetic Differentiation of Eurasian Stone Pines for Isozyme Loci, Genetika (Moscow), 1990, vol. 26, no. 4, pp. 440–450.

    Google Scholar 

  34. Krutovsky, K.V. and Politov, D.V., Study of Intra-and Interspecific Genetic Differentiation of Eurasian Stone Pines Using Isozyme Loci and Multidimensional Analysis, in Molekulyarnye mekhanizmy geneticheskikh protsessov (Molecular Mechanisms of Genetic Processes), Moscow: Nauka, 1992, pp. 87–96.

    Google Scholar 

  35. Politov, D.V., Krutovsky, K.V., and Altukhov, Yu.P., Isozyme Loci Characteristics of Gene Banks of Populations of Cedar Pines, Genetika (Moscow), 1992, vol. 28, no. 1, pp. 76–95.

    Google Scholar 

  36. Krutovsky, K.V., Politov, D.V., and Altukhov, Yu.P., Study of Genetic Differentiation and Phylogeny of Stone Pine Species Using Isozyme Loci, Proc. Int. Workshop on Subalpine Stone Pines and Their Environment: The Status of Our Knowledge (St. Moritz, Switzerland, 1992), W.C. Schmidt and F.-K. Holtmeier, Comps., 1994, pp. 19–30.

  37. Politov, D.V. and Krutovsky, K.V., Allozyme Polymorphism, Heterozygosity, and Mating System of Stone Pines (Pinus, Subsection Cembrae), Proc. Int. Workshop on Subalpine Stone Pines and Their Environment: The Status of Our Knowledge (St. Moritz, Switzerland, 1992), W.C. Schmidt and F.-K. Holtmeier, Comps., 1994, pp. 36–42.

  38. Krutovsky, K.V., Politov, D.V., and Altukhov, Yu.P., Isozyme Study of Population Genetic Structure, Mating System and Phylogenetic Relationships of the Five Stone Pine Species (Subsection Cembrae, Section Strobi, Subgenus Strobus), Population Genetics and Genetic Conservation of Forest Trees, (Proc. Int. Symp., Carcans Maubuisson, France, 1995), Amsterdam: SPB Acad., 1995, pp. 279–304.

    Google Scholar 

  39. Krutovsky, K.V. and Bergmann, F., Introgressive Hybridization and Phylogenetic Relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb. Spruce Species Studied by Isozyme Loci, Heredity, 1995, vol. 74, pp. 464–480.

    Google Scholar 

  40. Krutovsky, K.V. and Politov, D.V., Allozyme Evidence for Polyzygotic Polyembryony in Siberian Stone Pine (Pinus sibirica Du Tour), Theor. Appl. Genet., 1995, vol. 90, pp. 811–818.

    Google Scholar 

  41. Belokon’, M.M., Politov, D.V., Belokon’, Yu.S., et al., Genetic Differentiation in White Pines of the Section Strobus: Isozyme Analysis Data, Dokl. Akad. Nauk, 1998, vol. 358, no. 5, pp. 699–702.

    CAS  Google Scholar 

  42. Politov, D.V., Belokon, M.M., Maluchenko, O.P., et al., Genetic Evidence of Natural Hybridization Between Siberian Stone Pine, Pinus sibirica Du Tour, and Dwarf Siberian Pine, P. pumila (Pall.) Regel, Forest Genet., 1999, vol. 6, no. 1, pp. 41–48.

    Google Scholar 

  43. Politov, D.V. and Krutovsky, K.V., Phylogenetics, Genogeography and Hybridization of Five-Needle Pines in Russia and Neighboring Countries, Breeding and Genetic Resources of Five-Needle Pines: Growth, Adaptability, and Pest Resistance, Sniezko, R., Samman, S., Schlarbaum, S., and Kriebel, H., Eds., Fort Collins: U.S. Dep. Agricult., Forest Serv., Mountain Res. Stat., 2004, pp. 85–97.

    Google Scholar 

  44. Belokon’, Yu.S., Politov, D.V., Belokon’, M.M., and Krutovsky, K.V., Genetic Differentiation of Boggi and Drained Soil Populations of Scots Pine, Pinus sylvestris L.), Zhizn’ populyatsiy v geterogennoi srede (Population Life in Heterogeneous Environment), Ioshkar-Ola: Periodika Marii El, 1998, pp. 23–24.

    Google Scholar 

  45. Politov, D.V. and Krutovsky, K.V., Clinical Variation of Allozyme Loci in Norway and Sibirian Spruce Populations, Zhizn’ populyatsiy v geterogennoi srede (Population Life in Heterogeneous Environment), Ioshkar-Ola: Periodika Marii El, 1998, pp. 25–38.

    Google Scholar 

  46. Bruederle, L.P., Rogers, D.L., Krutovsky, K.V., and Politov, D.V., Population Genetics and Evolutionary Implications, Whitebark Pine Communities: Ecology and Restoration, Tomback, D.F., Arno, S.F., and Keane, R.E., Eds., Washington D.C.: Island Press, 2001, pp. 137–153.

    Google Scholar 

  47. Aagaard, J.E., Krutovsky, K.V., and Strauss, S.H., RAPDs and Allozymes Exhibit Similar Levels of Diversity and Differentiation Among Populations and Races of Douglas-Fir, Heredity, 1998, vol. 81, no. 1, pp. 69–78.

    Article  CAS  Google Scholar 

  48. Aagaard, J.E., Krutovsky, K.V., and Strauss, S.H., RAPD Markers of Mitochondrial Origin Exhibit Lower Population Diversity and Higher Differentiation than RAPDs of Nuclear Origin in Douglas-Fir, Mol. Ecol., 1998, vol. 7, no. 7, pp. 801–812.

    Article  CAS  Google Scholar 

  49. Wu, J., Krutovsky, K.V., and Strauss, S.H., Abundant Mitochondrial Genome Diversity, Population Differentiation, and Convergent Evolution in Pines, Genetics, 1998, vol. 150, no. 4, pp. 1605–1614.

    PubMed  CAS  Google Scholar 

  50. Wu, J., Krutovsky, K.V., and Strauss, S.H., Nuclear DNA Diversity, Population Differentiation, and Phylogenetic Relationships in the California Closed-Cone Pines Based on RAPD and Allozyme Markers, Genome, 1999, vol. 42, no. 5, pp. 893–908.

    Article  CAS  Google Scholar 

  51. Slavov, G.T., Howe, G.T., Yakovlev, I., et al., Highly Variable SSR Markers in Douglas-Fir: Mendelian Inheritance and Map Locations, Theor. Appl. Genet., 2004, vol. 108, pp. 873–880.

    Article  PubMed  CAS  Google Scholar 

  52. Krutovsky, K.V., Vollmer, S.S., Sorensen, F.C., et al., RAPD Genome Maps of Douglas-Fir, J. Hered., 1998, vol. 89, pp. 197–205.

    Article  Google Scholar 

  53. Carlson, J.E., Traore, A., Agrama, H.A., and Krutovsky, K.V., Douglas-Fir, Genome Mapping and molecular Breeding in Plants, Kole, C., Ed., Berlin: Springer, 2007 (in press).

    Google Scholar 

  54. Wheeler, N.C., Jermstad, K.D., Krutovsky, K.V., et al., Mapping of Quantitative Trait Loci Controlling Adaptive Traits in Coastal Douglas-Fir. IV. Cold-Hardiness QTL Verification and Candidate Gene Mapping, Mol. Breeding, 2005, vol. 15, pp. 145–156.

    Article  CAS  Google Scholar 

  55. Krutovsky, K.V., Troggio, M., Brown, G.R., et al., Comparative Mapping in the Pinaceae, Genetics, 2004, vol. 168, no. 1, pp. 447–461.

    Article  PubMed  CAS  Google Scholar 

  56. Neale, D.B. and Krutovsky, K.V., Comparative Genetic Mapping in Trees: the Group of Conifers, Biotechnology in Agriculture and Forestry: Molecular Marker Systems, Loerz, H. and Wenzel, G., Eds., Berlin: Springer, 2004, pp. 267–277.

    Google Scholar 

  57. Krutovsky, K.V. and Neale, D.B., Forest Genomics and New Molecular Genetic Approaches to Measuring and Conserving Adaptive Genetic Diversity in Forest Trees, Conservation and Management of Forest Genetic Resources in Europe, Geburek, Th. and Turok, J., Eds., Zvolen: Arbora Publ., 2005, pp. 369–390.

    Google Scholar 

  58. Krutovsky, K.V., Elsik, C.G., Matvienko, M., et al., Identification of Candidate Genes for Conserved Ortholog Set in Forest Trees, Tree Genetics and Genomes, 2006, vol. 2, no. 4.

  59. Brown, G.R., Gill, G.P., Kuntz, R.J., et al., Nucleotide Variation and Linkage Disequilibrium in Loblolly Pine, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 15255–15260.

    Article  PubMed  CAS  Google Scholar 

  60. Krutovsky, K.V. and Neale, D.B., Nucleotide Diversity and Linkage Disequilibrium in Cold-Hardiness and Wood Quality-Related Candidate Genes in Douglas-Fir, Genetics, 2005, vol. 171, no. 4, pp. 2029–2041.

    Article  PubMed  CAS  Google Scholar 

  61. Gonzalez-Martinez, S.C., Ersoz, E., Brown, G.R., et al., DNA Sequence Variation and Selection of Tag Single-Nucleotide Polymorphisms at Candidate Genes for Drought-Stress Response in Pinus taeda L., Genetics, 2006, vol. 172, no. 3, pp. 1915–1926.

    Article  PubMed  CAS  Google Scholar 

  62. Krutovsky, K.V., Modern Approaches to Study Selection on Enzyme Loci, Usp. Sovrem. Biol., 1988, vol. 106, no. 3, pp. 323–339.

    Google Scholar 

  63. Whitham, T.G., Young, W.P., Martinsen, G.D., et al., Community and Ecosystem Genetics: A Consequence of the Extended Phenotype, Ecology, 2003, vol. 84, pp. 559–573.

    Google Scholar 

  64. Manel, S., Schwartz, M., Luikart, G., and Taberlet, P., Landscape Genetics: Combining Landscape Ecology and Population Genetics, Trends Ecol. Evol., 2003, vol. 18, pp. 189–197.

    Article  Google Scholar 

  65. Feder, M.E. and Mitchell-Olds, T., Evolutionary and Ecological Functional Genomics, Nat. Rev. Genet., 2003, vol. 4, pp. 649–655.

    Article  CAS  Google Scholar 

  66. Petit, R.J., Brewer, S., Bordacs, S., et al., Identification of Refugia and Postglacial Colonization Routes of European White Oaks Based on Chloroplast DNA and Fossil Pollen Evidence, For. Ecol. Manage, 2002, vol. 156, pp. 49–74.

    Article  Google Scholar 

  67. Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., et al., Glacial Refugia: Hotspots but not Melting Pots of Genetic Diversity, Science, 2003, vol. 300, pp. 1563–1565.

    Article  PubMed  CAS  Google Scholar 

  68. Holderegger, R., Angelone, S., Brodbeck, S., et al., Application of Genetic Markers to the Discrimination of European Black Poplar (Populus nigra) from American Black Poplar (P. deltoids) and Hybrid Poplars (P. x canadensis) in Switzerland, Trees—Struct. Funct., 2005, vol. 19, no. 6, pp. 743–748.

    Google Scholar 

  69. Kal’chenko, V.A., Arkhipov, N.P., and Fedotov, I.S., Mutagenesis of Enzyme Loci Induced in Pinus sylvestris L. Megaspores by Ionizing Radiation during Chernobyl Accident, Genetika (Moscow), 1993, vol. 29, no. 2, pp. 266–273.

    CAS  Google Scholar 

  70. Kal’chenko, V.A., Rubanovich, A.V., Fedotov, I.S., and Arkhipov, N.P., Genetic Effects, Induced by Chernobyl Accident in the Gametes of Scots Pine, Pinus sylvestris L.), Genetika (Moscow), 1993, vol. 29, no. 7, pp. 1205–1212.

    Google Scholar 

  71. Kuchma, O., Kuchma, N., Arkhipov, A., and Finkeldey, R., SSR Markers as Tools to Reveal Mutation Events in Scots Pine, Pinus sylvestris L.) from Chernobyl, Eur. J. Forest Res., 2004, vol. 123, pp. 245–248.

    Article  CAS  Google Scholar 

  72. Papageorgiou, A.C., Finkeldey, R., Hattemer, H.H., and Xenopoulos, S., Genetic Differences Between Autochthonous and Breeding Populations of Common Cypress (Cupressus sempervirens L.) in Greece, Eur. J. Forest Res., 2005, vol. 124, pp. 119–124.

    Article  CAS  Google Scholar 

  73. Boshier, D.H. and Young, A.G., Forest Conservation Genetics: Limitations and Future Directions, Forest Conservation Genetics: Principles and Practice, Young, A., Boshier, D., and Boyle, T., Eds., Wallingford, UK: CABI Publ., 2000, pp. 119–124.

    Google Scholar 

  74. Lagerkrantz, U. and Ryman, N., Genetic Structure of Norway Spruce (Picea abies): Concordance of Morphological and Allozymic Variation, Evolution, 1990, vol. 44, pp. 38–53.

    Article  Google Scholar 

  75. Mitton, J.B. and Duran, K.L., Genetic Variation in Pin?on Pine, Pinus edulis, Associated with Summer Precipitation, Mol. Ecol., 2004, vol. 13, pp. 1259–1264.

    Article  PubMed  CAS  Google Scholar 

  76. Mitton, J.B., Grant, M.C., and Yoshino, A.M., Variation in Allozymes and Stomatal Size in Pinyon (Pinus edulis, Pinaceae), Associated with Soil Moisture, Amer. J. Bot., 1998, vol. 85, pp. 1262–1265.

    Article  Google Scholar 

  77. Karhu, A., Hurme, P., Karjalainen, M., et al., Do Molecular Markers Reflect Patterns of Differentiation in Adaptive Traits of Conifers?, Theor. Appl. Genet., 1996, vol. 93, pp. 215–221.

    Article  CAS  Google Scholar 

  78. McKay, J.K. and Latta, R.G., Adaptive Population Divergence: Markers, QTL and Traits, Trends Ecol. Evol., 2002, vol. 17, pp. 285–291.

    Article  Google Scholar 

  79. Adams, W.T. and Campbell, R.K., Genetic Adaptation and Source Specificity, Reforestation of Skeletal Soils, Hobbs, S.D., and Helgerson, O.T., Eds., Corvallis, USA: Forest Res. Lab., Oregon State Univ., 1981, pp. 78–85.

    Google Scholar 

  80. Merkle, S.A., Adams, W.T., and Campbell, R.K., Multivariate Analysis of Allozyme Variation Patterns in Coastal Douglas-Fir from Southwest Oregon, Canad. J. Forest Res., 1988, vol. 18, pp. 181–187.

    Google Scholar 

  81. González-Martinez, S.C., Mariette, S., Ribeiro, M.M., et al., Genetic Resources in Maritime Pine (Pinus pinaster Aiton): Molecular and Quantitative Measures of Genetic Variation and Differentiation among Maternal Lineages, Forest Ecol. Manag., 2004, vol. 197, pp. 103–115.

    Article  Google Scholar 

  82. Liu, B. H., Statistical Genomics: Linkage, Mapping and QTL Analysis, Boca Raton: FA: CRC Press, 1997, p. 611.

    Google Scholar 

  83. Molecular Dissection of Complex Traits, Paterson, A.H., Ed., Boca Raton, FA: CRC Press, 1998, p. 305.

    Google Scholar 

  84. Mauricio, R., Mapping Quantitative Trait Loci in Plants: Uses and Caveats for Evolutionary Biology, Nat. Rev. Genet., 2001, vol. 2, pp. 370–381.

    Article  PubMed  CAS  Google Scholar 

  85. Doerge, R.W., Mapping and Analysis of Quantiative Trait Loci in Experimental Populations, Nat. Rev. Genet., 2002, vol. 3, pp. 43–52.

    Article  PubMed  CAS  Google Scholar 

  86. Jermstad, K.D., Bassoni, D.L., Jech, K.S., et al., Mapping of Quantitative Trait Loci Controlling Adaptive Traits in Coastal Douglas Fir. III. Quantitative Trait Loci-By-Environment Interactions, Genetics, 2003, vol. 165, pp. 1489–1506.

    PubMed  CAS  Google Scholar 

  87. Sewell, M.M. and Neale, D.B., Mapping Quantitative Traits in Forest Trees, Molecular Biology of Woody Plants, Jain, S.M. and Minocha, S.C., Eds., Dordrecht: Kluwer (2000, pp. 407–423.

    Google Scholar 

  88. Andersen, J.R. and Lubberstedt, T., Functional Markers in Plants, Trends Plant Sci., 2003, vol. 8, pp. 554–560.

    Article  PubMed  CAS  Google Scholar 

  89. Kennedy, G.C., Matsuzaki, H., Dong, S., et al., Large-Scale Genotyping of Complex DNA, Nat. Biotechnol., 2003, vol. 21, no. 10, pp. 1233–1237.

    Article  PubMed  CAS  Google Scholar 

  90. Barker, D.L., Hansen, M.S., Faruqi, A.F., et al., Two Methods of Whole-Genome Amplification Enable Accurate Genotyping across a 2320-SNP Linkage Panel, Genome Res., 2004, vol. 14, pp. 901–907.

    Article  PubMed  CAS  Google Scholar 

  91. Matsuzaki, H., Loi, H., Dong, S., et al., Parallel Genotyping of over 10 000 SNPs Using a One-Primer Assay on a High-Density Oligonucleotide Array, Genome Res., 2004, vol. 14, no. 3, pp. 414–425.

    Article  PubMed  CAS  Google Scholar 

  92. Matsuzaki, H., Dong, S., Loi, H., et al., Genotyping over 100 000 SNPs on a Pair of Oligonucleotide Arrays, Nat. Methods, 2004, vol. 1, no. 2, pp. 109–111.

    Article  PubMed  CAS  Google Scholar 

  93. Sobrino, B., Brion, M., and Carracedo, A., SNPs in Forensic Genetics: A Review on SNP Typing Methodologies, Forensic Sci. Int., 2005, vol. 154, nos. 2–3, pp. 181–194.

    Article  PubMed  CAS  Google Scholar 

  94. Syvanen, A.C., Toward Genome-Wide SNP Genotyping, Nat. Genet., 2005, vol. 37(suppl.), pp. S5–S10.

    Article  PubMed  CAS  Google Scholar 

  95. Hirschhorn, J.N. and Daly, M.J., Genome-Wide Association Studies for Common Diseases and Complex Traits, Nat. Rev. Genet., 2005, vol. 6, pp. 95–108.

    Article  PubMed  CAS  Google Scholar 

  96. Le-Dantec, L., Chagne, D., Pot, D., et al., Automated SNP Detection in Expressed Sequence Tags: Statistical Considerations and Application to Maritime Pine Sequences, Plant Mol. Biol., 2004, vol. 54, pp. 461–470.

    Article  Google Scholar 

  97. Dubos, C. and Plomion, C., Identification of Water-Deficit Responsive Genes in Maritime Pine (Pinus pinaster Ait.) Roots, Plant Mol. Biol., 2003, vol. 51, pp. 249–262.

    Article  PubMed  CAS  Google Scholar 

  98. Dubos, C., Le-Provost G., Pot, D., et al., Identification and Characterization of Water-Stressresponsive Genes in Hydroponically Grown Maritime Pine (Pinus pinaster) Seedlings, Tree Physiol., 2003, vol. 23, pp. 169–179.

    PubMed  CAS  Google Scholar 

  99. Watkinson, J.I., Sioson, A.A., Vasquez-Robinet, C., et al., Photosynthetic Acclimation Is Reflected in Specific Patterns of Gene Expression in Drought-Stressed Loblolly Pine, Plant Physiol., 2003, vol. 133, pp. 1702–1716.

    Article  PubMed  CAS  Google Scholar 

  100. Lorenz, W.W., Sun, F., Liang, C., et al., Water Stress-Responsive Genes in Loblolly Pine (Pinus taeda) Roots Identified by Analyses of Expressed Sequence Tag Libraries, Tree Physiol., 2006, vol. 26, no. 1, pp. 1–16.

    Article  PubMed  Google Scholar 

  101. Kreitman, M., Methods to Detect Selection in Populations with Applications to the Human, Ann. Rev. Genomics and Human Genet., 2000, vol. 1, pp. 539–559.

    Article  CAS  Google Scholar 

  102. Rosenberg, N.A. and Nordborg, M., Genealogical Trees, Coalescent Theory and the Analysis of Genetic Polymorphisms, Nat. Rev. Genet., 2002, vol. 3, pp. 380–390.

    Article  PubMed  CAS  Google Scholar 

  103. Kosakovsky Pond, S.L. and Frost, S.D., Not so Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection, Mol. Biol. Evol., 2005, vol. 22, no. 5, pp. 1208–1222.

    Article  PubMed  CAS  Google Scholar 

  104. Kosakovsky Pond, S.L. and Frost, S.D.W., Datamonkey: Rapid Detection of Selective Pressure on Individual Sites of Codon Alignments, Bioinformatics, 2005, vol. 21, no. 10, pp. 2531–2533.

    Article  CAS  Google Scholar 

  105. Kosakovsky Pond, S.L., Frost, S.D.W., and Muse, S.V., HyPhy: Hypothesis Testing Using Phylogenies, Bioinformatics, 2005, vol. 21, pp. 676–679.

    Article  CAS  Google Scholar 

  106. Marchini, J., Cardon, L.R., Phillips, M.S., and Donnelly, P., The Effects of Human Population Structure on Large Genetic Association Studies, Nat. Genet., 2004, vol. 36, pp. 512–517.

    Article  PubMed  CAS  Google Scholar 

  107. Wang, W.Y.S., Barratt, B.J., Clayton, D.G., and Todd, J.A., Genome-Wide Association Studies: Theoretical and Practical Concerns, Nat. Rev. Genet., 2005, vol. 6, pp. 109–118.

    Article  PubMed  CAS  Google Scholar 

  108. Pritchard, J.K., Stephens, M., Rosenberg, N.A., and Donnelly, P., Association Mapping in Structured Populations, Am. J. Hum. Genet., 2000, vol. 67, no. 1, pp. 170–181.

    Article  PubMed  CAS  Google Scholar 

  109. Zhang, W., Collins, A., Gibson, J., et al., Impact of Population Structure, Effective Bottleneck Time, and Allele Frequency on Linkage Disequilibrium Maps, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 52, pp. 18075–18080.

    Article  PubMed  CAS  Google Scholar 

  110. Yu, J., Pressoir, G., Briggs, W.H., et al., A Unified Mixed-Model Method for Association Mapping that Accounts for Multiple Levels of Relatedness, Nat. Genet., 2006, vol. 38, no. 2, pp. 203–208.

    Article  PubMed  CAS  Google Scholar 

  111. Spielman, R.S., McGinnis, R.E., and Ewens, W.J., Transmission Test for Linkage Disequilibrium, the Insulin Gene Region and Insulin-Dependent Diabetes Mellitus, IDDM, Amer. J. Human Genet., 1993, vol. 52, pp. 506–516.

    CAS  Google Scholar 

  112. Lin, S., Chakravarti, A., and Cutler, D.J., Exhaustive Allelic Transmission Disequilibrium Tests as a New Approach to Genome-Wide Association Studies, Nat. Genet., 2004, vol. 36, pp. 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  113. Krutovsky, K.V., St. Clair J.B., Saich, R., et al., Estimation of Population Structure in the Douglas-Fir Association Mapping Study, Plant & Animal Genome, XIV. Int. Conf. Status of Plant and Animal Genome Research, Final Program and Abstracts Guide, p. 34 (January 14–18, 2006). San Diego, CA, USA (http://www.intl-pag.org/14/abstracts/PAG14_W119.html).

  114. Long, A.D. and Langley, C.H., The Power of Association Studies to Detect the Contribution of Candidate Genetic Loci to Variation in Complex Traits, Genome Res., 1999, vol. 9, pp. 720–731.

    PubMed  CAS  Google Scholar 

  115. Garcia-Gil, M.R., Mikkonen, M., and Savolainen, O., Nucleotide Diversity at Two Phytochrome Loci along a Latitudinal Cline in Pinus sylvestris, Mol. Ecol., 2003, vol. 12, pp. 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  116. Reich, D.E., Cargill, M., Bolk, S., et al., Linkage Disequilibrium in the Human Genome, Nature, 2001, vol. 411, no. 6834, pp. 199–204.

    Article  PubMed  CAS  Google Scholar 

  117. Zaykin, D.V., Zhivotovsky, L.A., Westfall, P.H., and Weir, B.S., Truncated Product Method for Combining P-Values, Genet. Epidemiol., 2002, vol. 22, no. 2, pp. 170–185.

    Article  PubMed  CAS  Google Scholar 

  118. Zaykin, D.V. and Zhivotovsky, L.A., Ranks of Genuine Associations in Whole-Genome Scans, Genetics, 2005, vol. 171, no. 2, pp. 813–823.

    Article  PubMed  CAS  Google Scholar 

  119. Ingvarsson, P.K., Nucleotide Polymorphism and Linkage Disequilibrium within and Among Natural Populations of European Aspen (Populus tremula L., Salicaceae), Genetics, 2005, vol. 169, pp. 945–953.

    Article  PubMed  CAS  Google Scholar 

  120. Neale, D.B. and Savolainen, O., Association Genetics of Complex Traits in Conifers, Trends Plant Sci., 2004, vol. 9, pp. 325–330.

    Article  PubMed  CAS  Google Scholar 

  121. Pande, B., Krutovsky, K.V., and Jermstad, K.D., Association Genetics for Adaptive Traits in Douglas-Fir, Plant & Animal Genome, XIV Intern. Conf. Status of Plant and Animal Genome Research, Final Program and Abstracts Guide, p. 35.

  122. Howe, G.T. and Brunner, A.M., An Evolving Approach to Understanding Plant Adaptation, New Phytol., 2005, vol. 167, no. 1, pp. 1–5.

    Article  PubMed  CAS  Google Scholar 

  123. Whetten, R., Sun, Y.H., Zhang, Y., and Sederoff, R., Functional Genomics and Cell Wall Biosynthesis in Loblolly Pine, Plant Molec. Biol., 2001, vol. 47, pp. 275–291.

    Article  CAS  Google Scholar 

  124. Egertsdotter, U., van Zyl, L.M., MacKay, J., et al., Gene Expression During Formation of Earlywood and Latewood in Loblolly Pine: Expression Profiles of 350 Genes, Plant Biol., 2004, vol. 6, pp. 654–663.

    Article  PubMed  CAS  Google Scholar 

  125. Brinker, M., Van Zyl, L., Liu, W., et al., Microarray Analyses of Gene Expression During Adventitious Root Development in Pinus contorta, Plant Physiol., 2004, vol. 135, pp. 1526–1539.

    Article  PubMed  CAS  Google Scholar 

  126. Paux, E., Carocha, V., Marques, C., et al., Transcript Profiling of Eucalyptus Xylem Genes During Tension Wood Formation, New Phytol., 2005, vol. 167, pp. 89–100.

    Article  PubMed  CAS  Google Scholar 

  127. Paux, E., Tamasloukht, M., Ladouce, N., et al., Identification of Genes Preferentially Expressed During Wood Formation in Eucalyptus, Plant Mol. Biology, 2004, vol. 55, pp. 263–280.

    Article  CAS  Google Scholar 

  128. Schrader, J., Nilsson, J., and Mellerowicz, E., A High-Resolution Transcript Profile across the Wood-Forming Meristem of Poplar Identifies Potential Regulators of Cambial Stem Cell Identity, Plant Cell, 2004, vol. 16, pp. 2278–2292.

    Article  PubMed  CAS  Google Scholar 

  129. Yang, S.H. and Loopstra, C.A., Seasonal Variation in Gene Expression for Loblolly Pines (Pinus taeda) from Different Geographical Regions, Tree Physiol., 2005, vol. 25, pp. 1063–1073.

    PubMed  CAS  Google Scholar 

  130. Howe, D.K., Brunner, A.M., Cherry, M., et al., Identifying Candidate Genes Associated with Cold Hardiness in Coastal Douglas-Fir Using DNA Microarrays, Western Forest Genetics Association 50th Anniversary Meeting: Looking Back—Looking Ahead, Corvallis, USA, 2005.

    Google Scholar 

  131. Andersson-Gunneras, S., Mellerowicz, E.J., Love, J., et al., Biosynthesis of Cellulose-Enriched Tension Wood in Populus: Global Analysis of Transcripts and Metabolites Identifies Biochemical and Developmental Regulators in Secondary Wall Biosynthesis, Plant J., 2006, vol. 45, no. 2, pp. 144–165.

    Article  PubMed  CAS  Google Scholar 

  132. Bachem, C.W.B., van der Hoeven, R.S., de Bruijn, S.M., et al., Visualization of Differential Gene Expression Using a Novel Method of RNA Fingerprinting Based on AFLP: Analysis of Gene Expression During Potato Tuber Development, Plant J., 1996, vol. 9, pp. 745–753.

    Article  PubMed  CAS  Google Scholar 

  133. Bachem, C.W.B., Oomen, R.J.F.J., and Visser, R.G.F., Transcript Imaging with CDNA-AFLP: A Step-By-Step Protocol, Plant Mol. Biol. Rep., 1998, vol. 16, pp. 157–173.

    Article  CAS  Google Scholar 

  134. Heid, C.A., Stevens, J., Livak, K.J., and Williams, P.M., Real Time Quantitative PCR, Genome Res., 1996, vol. 6, pp. 986–994.

    PubMed  CAS  Google Scholar 

  135. Bauer, D., Muller, H., Reich, J., et al., Identification of Differentially Expressed MRNA Species by An Improved Display Technique (DDRT-PCR), Nucleic Acids Res., 1993, vol. 21, no. 18, pp. 4272–4280.

    PubMed  CAS  Google Scholar 

  136. Kuhn, E., From Library Screening to Microarray Technology: Strategies to Determine Gene Expression Profiles and to Identify Differentially Regulated Genes in Plants, Ann. Botany, 2001, vol. 87, pp. 139–155.

    Article  CAS  Google Scholar 

  137. Le Provost, G., Paiva, J., Pot, D., et al., Seasonal Variation in Transcript Accumulation in Wood-Forming Tissues of Maritime Pine (Pinus pinaster Ait.) with Emphasis on a Cell Wall Glycine-Rich Protein, Planta, 2003, vol. 217, pp. 820–830.

    Article  PubMed  CAS  Google Scholar 

  138. Cato, S., McMillan, L., Donaldson, L., et al., Wood Formation from the Base to the Crown in Pinus radiate: Gradients of Tracheid Wall Thickness, Wood Density, Radial Growth Rate and Gene Expression, Plant Mol. Biol., 2006, vol. 60, no. 4, pp. 565–581.

    Article  PubMed  CAS  Google Scholar 

  139. Yang, S.H., Wang, H., Sathyan, P., et al., Real-Time RT-PCR Analysis of Loblolly Pine (Pinus taeda) Arabinogalactan-Protein and Arabinogalactan-Protein-Like Genes, Physiol. Plant., 2005, vol. 124, pp. 91–106.

    Article  CAS  Google Scholar 

  140. Andersson, A., Keskitalo, J., Sjodin, A., et al., A Transcriptional Timetable of Autumn Senescence, Genome Biol., 2004, vol. 5, no. 4, p. R24.

    Article  PubMed  Google Scholar 

  141. Yang, J.M., Kamdem, D.P., Keathley, D.E., and Han, K.H., Seasonal Changes in Gene Expression at the Sapwood-Heartwood Transition Zone of Black Locust (Robinia pseudoacacia) Revealed by CDNA Microarray Analysis, Tree Physiol., 2004, vol. 24, pp. 461–474.

    PubMed  CAS  Google Scholar 

  142. Black, W.C., Baer, C.F., Antolin, M.F., and DuTeau, N.M., Population Genomics: Genome-Wide Sampling of Insect Populations, Ann. Rev. Entomology, 2001, vol. 46, pp. 441–469.

    Article  CAS  Google Scholar 

  143. Payseur, B.A., Cutter, A.D., and Nachman, M.W., Searching for Evidence of Positive Selection in the Human Genome Using Patterns of Microsatellite Variability, Mol. Biol. Evol., 2002, vol. 7, pp. 1143–1153.

    Google Scholar 

  144. Beaumont, M.A., and Nichols, R.A., Evaluating Loci for Use in the Genetic Analysis of Population Structure, Proc. R. Soc. London, 1996, vol. 263, pp. 1619–1626.

    Google Scholar 

  145. Lewontin, R.C. and Krakauer, J.K., Distribution of Gene Frequency as a Test of the Theory of the Selective Neutrality of Polymorphisms, Genetics, 1973, vol. 74, pp. 175–195.

    PubMed  CAS  Google Scholar 

  146. Beaumont, M.A. and Rannala, B., The Bayesian Revolution in Genetics, Nat. Rev. Genet., 2004, vol. 5, pp. 251–261.

    Article  PubMed  CAS  Google Scholar 

  147. Vitalis, R., Dawson, K., and Boursot, P., Interpretation of Variation across Marker Loci as Evidence of Selection, Genetics, 2001, vol. 158, pp. 1811–1823.

    PubMed  CAS  Google Scholar 

  148. Akey, J.M., Zhang, G., Zhang, K., et al., Interrogating a High-Density SNP Map for Signatures of Natural Selection, Genome Research, 2002, vol. 12, pp. 1805–1814.

    Article  PubMed  CAS  Google Scholar 

  149. Scotti-Saintagne, C., Mariette, S., Porth, I., et al., Genome Scanning for Interspecific Differentiation Between Two Closely Related Oak Species [Quercus robur L. and Q. petraea (Matt.) Liebl.], Genetics, 2004, vol. 168, pp. 1615–1626.

    Article  PubMed  CAS  Google Scholar 

  150. Bhalerao, R., Nilsson, O., and Sandberg, G., Out of the Woods: Forest Biotechnology Enters the Genome-Wide Era, Curr. Opin. Biotechnol., 2003, vol. 14, no. 2, pp. 206–213.

    Article  PubMed  CAS  Google Scholar 

  151. Nehra, N.S., Becwar, M.R., Rottmann, W.H., et al., Invited Review: Forest Biotechnology: Innovative Methods, Emerging Opportunities, In vitro Cell. Dev. Biol.—Plant, 2005, vol. 41, no. 6, pp. 701–717.

    Article  CAS  Google Scholar 

  152. Wullschleger, S.D., Tuskan, G.A., and DiFazio, S.P., Genomics and the Tree Physiologist, Tree Physiol., 2002, vol. 22, pp. 1273–1276.

    PubMed  CAS  Google Scholar 

  153. Brunner, A.M., Busov, V.V., and Strauss, S.H., Poplar Genome Sequence: Functional Genomics in an Ecologically Dominant Plant Species, Trend Plant Sci., 2004, vol. 9, pp. 49–56.

    Article  CAS  Google Scholar 

  154. Strauss, S.H. and Martin, F.M., Poplar Genomics Comes of Age, New Phytol., 2004, vol. 164, pp. 1–4.

    Article  CAS  Google Scholar 

  155. Tuskan, G., Difazio, S.P., and Teichmann, T., Poplar Genomics Is Getting Popular: The Impact of the Poplar Genome Project on Tree Research, Plant Biol., 2004, vol. 6, pp. 2–4.

    Article  PubMed  CAS  Google Scholar 

  156. MacKay, J., Berube, H., Regan, S., and Seguin, A., Functional Genomics in Forest Trees: Application to the Investigation of Defense Mechanisms and Wood Formation, Plantation Forest Biotechnology for the 21st Century, Walter, C. and Carson, M., Eds., Kerala, India: Res. Singpost, 2004, P. 163–180.

    Google Scholar 

  157. Poke, F.S., Vaillancourt, R.E., Potts, B.M., and Reid, J.B., Genome-Wide Research in Eucalyptus, Genetics, 2005, vol. 125, pp. 79–101.

    Article  CAS  Google Scholar 

  158. Plomion, C. and Richardson, T., MacKay J. Advances in Forest Tree Genomics, New Phytol., 2005, vol. 166, no. 3, pp. 713–717.

    Article  PubMed  Google Scholar 

  159. Vasemagi, A. and Primmer, C.R., Challenges for Identifying Functionally Important Genetic Variation: The Promise of Combining Complementary Research Strategies, Mol. Ecol., 2005, vol. 14, no. 12, pp. 3623–3642.

    Article  PubMed  CAS  Google Scholar 

  160. Gibson, G., Microarrays in Ecology and Evolution: A Preview, Mol. Ecol., 2002, vol. 11, pp. 17–24.

    Article  PubMed  CAS  Google Scholar 

  161. Purugganan, M. and Gibson, G., Merging Ecology, Molecular Evolution, and Functional Genetics, Mol. Ecol., 2003, vol. 12, pp. 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  162. Howe, G.T., Aitken, S.N., Neale, D.B., et al., From Genotype to Phenotype: Unraveling the Complexities of Cold Adaptation in Forest Trees, Canad. J. Botany, 2003, vol. 81, pp. 1247–1266.

    Article  CAS  Google Scholar 

  163. Latta, R.G., Gene Flow, Adaptive Population Divergence and Comparative Population Structure across Loci, New Phytol., 2004, vol. 161, no. 1, pp. 51–58.

    Article  CAS  Google Scholar 

  164. St. Clair, J.B., Mandel, N.L., Vance-Borland, K.W., Genecology of Douglas-fir in Western Oregon and Washington, Ann. Botany, 2005, vol. 96, no. 7, pp. 1199–1214.

    Article  Google Scholar 

  165. Agrawal, A.A., Community Genetics: New Insights into Community Ecology by Integrating Population Genetics, Ecology, 2003, vol. 84, pp. 543–544.

    Google Scholar 

  166. Vellend, M. and Geber, M.A., Connections Between Species Diversity and Genetic Diversity, Ecol. Lett., 2005, vol. 8, pp. 767–781.

    Article  Google Scholar 

  167. Richardson, J.E., Pennington, T., Pennington, T.D., and Hollingsworth, P.M., Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees, Science, 2001, vol. 293, pp. 2242–2245.

    Article  PubMed  CAS  Google Scholar 

  168. Groover, A.T., What Genes Make a Tree a Tree?, Trends Plant Sci., 2005, vol. 10, pp. 210–214.

    Article  PubMed  CAS  Google Scholar 

  169. Tuskan, G.A., DiFazio, S.P., Hellsten, U., et al., The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray ex Brayshaw), submitted for publication in Science.

  170. Forest Conservation Genetics: Principles and Practice, Young, A., Boyle, T.J.B., Boshier, D., Eds., Melbourne: CSIRO, 2000, p. 351.

    Google Scholar 

  171. Dynamics and Conservation of Genetic Diversity in Forest Ecology, Forest Ecol. Manag., (special issue) 2004, vol. 197, nos. 1–3, pp. 1–339.

  172. Dinamika populyatsionnykh genofondov pri antropogennykh vozdeistviyakh (Dynamics of Population Gene Pools under Antropogenic Influence), Altukhov, Yu.P., Ed., Moscow: Nauka, 2004, p. 619.

    Google Scholar 

  173. Mariette, S., Le-Corre, V., Austerlitz, F., Kremer, A., Sampling within the Genome for Measuring Within-Population Diversity: Trade-Offs Between Markers, Mol. Ecol., 2002, vol. 11, pp. 1145–1156.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.V. Krutovsky, 2006, published in Genetika, 2006, Vol. 42, No. 10, pp. 1304–1318.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutovsky, K.V. From population genetics to population genomics of forest trees: Integrated population genomics approach. Russ J Genet 42, 1088–1100 (2006). https://doi.org/10.1134/S1022795406100024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406100024

Keywords

Navigation