Skip to main content
Log in

Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract:

Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic background. In this study, spring cold-hardiness of Douglas-fir foliar tissues was evaluated in two clonally replicated (n=170 and 383 clones) full-sib cohorts derived from the same parental cross in two different years (made 5 years apart). The cohorts were established in widely separated forest test sites and tissues were artificially freeze tested using different cold injury assessment methods. Four of six unique QTL detected for spring cold-hardiness in needles of Cohort 1 were tentatively verified in the second cohort. Four additional QTL were detected in Cohort 2, two on linkage groups (LGs) not previously represented in the smaller cohort. In total, 10 unique QTL were identified across both cohorts. Seventeen of twenty-nine putative cold-hardiness candidate genes (Douglas-fir ESTs) placed on the Douglas-fir linkage map locate within the 95% confidence intervals of spring needle cold-hardiness QTL from the two cohorts and thus represent priority targets for initiating association mapping in Douglas-fir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Aitken W.T. Adams (1995) Screening for cold-hardiness in coastal Douglas-fir B.M. Potts N.M.G. Borralho J.B. Reid R.N. Cromer W.N. Tibbits C.A. Raymond (Eds) Eucalypt Plantations: Improving Fibre Yield and Quality. Proc. CRC/IUFRO Conference19-24 Feb. 1994, HobartAustralia. CRC for Temperate Hardwood Forestry Hobart, Australia 321–324

    Google Scholar 

  2. S.N. Aitken W.T. Adams (1996) ArticleTitleGenetics of fall and winter cold-hardiness of coastal Douglas-fir in Oregon Can. J. Forest Res. 26 1828–1837

    Google Scholar 

  3. S.N. Aitken W.T. Adams (1997) ArticleTitleSpring cold hardiness under strong genetic control in Oregon populations of Pseudotsuga menziesii var. menziesii Can. J. Forest Res. 27 1773–1780

    Google Scholar 

  4. S.N. Aitken M. Hannerz (2000) Genecology and gene resource management strategies for conifer cold hardiness F.J. Bigras S.J. Columbo (Eds) Conifer Cold Hardiness Kluwer Academic Publishers Dordrecht, The Netherlands 23–53

    Google Scholar 

  5. T.S. Anekonda W.T. Adams S.N. Aitken (1998) ArticleTitleInfluence of second flushing on genetics assessment of cold hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) Forest Ecol. Manage. 111 119–126

    Google Scholar 

  6. T.S. Anekonda W.T. Adams S.N. Aitken (2000a) ArticleTitleCold-hardiness testing for Douglas-fir tree improvement programs: guidelines for a simplerobust and inexpensive method West. J. Appl. Forest 15 129–136

    Google Scholar 

  7. T.S. Anekonda W.T. Adams S.N. Aitken D.B. Neale K.D. Jermstad N.C. Wheeler (2000b) ArticleTitleGenetics of cold-hardiness in a cloned full-sib family of coastal Douglas-fir Can. J. Forest Res. 30 837–840

    Google Scholar 

  8. R.D. Ball (2001) ArticleTitleBayesian methods for quantitative trait loci mapping based on model selection: appropriate analysis using the Bayesian information criterion Genetics 159 1351–1364

    Google Scholar 

  9. Beavis W.D. 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proc. 49th Annual Corn and Sorghum Indus. Res. Conf., pp. 304–312.

  10. L.T. Binh K. Oono (1992) ArticleTitleMolecular cloning and characterization of genes related to chilling tolerance in rice Plant Physiol. 99 1146–1150

    Google Scholar 

  11. H.D. Bradshaw (1996) Molecular genetics of Populus R.F. Stettler H.D. Bradshaw P.E. Heilman T.M. Hinckley (Eds) Biology of Populusits Implications for Management and Conservation Part 1, Chapter 8. NRC Res. Press, Nat. Res. Coun. Can. Ottawa,ON 183–199

    Google Scholar 

  12. G.R. Brown D.L. Bassoni G.P. Gill J.R. Fontana N.C. Wheeler R.A. Megraw et al. (2003) ArticleTitleIdentification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.) III. QTL verification and candidate gene mapping Genetics 164 1537–1546

    Google Scholar 

  13. L.R. Cardon J.L. Bell (2001) ArticleTitleAssociation study designs for complex diseases Nat. Rev. Genet. 2 91–99

    Google Scholar 

  14. S. Chang J.D. Puryear M.A.D.L. Dias E.A. Funkhouser R.J. Newton J. Cairney (1996) ArticleTitleGene expression under water deficit in loblolly pine (Pinus taeda): Isolation and characterization of cDNA clones Physiol. Plantarum 97 139–148

    Google Scholar 

  15. A. Darvasi M. Soller (1997) ArticleTitleA simple method to calculate resolving power and confidence interval of QTL maplocation Behavior Genetics 27 IssueID2 125–132

    Google Scholar 

  16. C. Dubos G. Le Provost D. Pot F. Saline C. Lalane D. Madur J.M. Frigerio C. Plomion (2003) ArticleTitleIdentification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings Tree Physiol. 23 169–179

    Google Scholar 

  17. M.D. Edwards C.W. Stuber J.F. Wendel (1987) ArticleTitleMolecular marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action Genetics 116 113–125 Occurrence Handle1:STN:280:BiiB2cfgtlY%3D Occurrence Handle3596228

    CAS  PubMed  Google Scholar 

  18. D.S. Falconer T.F.C. MacKay (1996) Introduction to Quantitative Genetics, 4th ed Longman Scientific and Technical Essex, UK

    Google Scholar 

  19. W. Feller (1968) The hypergeometric series §2.6 An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed Wiley New York 41–45

    Google Scholar 

  20. H.L. Flint B.R. Boyce D.J. Beattie (1967) ArticleTitleIndex of injury – a useful expression of freezing injury to plant tissues as determined by the electrolytic method Can. J. Plant. Sci. 47 229–230

    Google Scholar 

  21. B.E. Frewen T.H.H. Chen G.T. Howe A. Davis J. Rohde W. Boerjan et al. (2000) ArticleTitleQuantitative trait loci and candidate gene mapping of bud set and bud flush in Populus Genetics 154 837–845 Occurrence Handle1:CAS:528:DC%2BD3cXht1yqtLc%3D Occurrence Handle10655234

    CAS  PubMed  Google Scholar 

  22. M. Hannerz S.N. Aitken J.N. King S. Budge (1999) ArticleTitleEffects of genetic selection for growth on frost hardiness in western hemlock Can. J. Forest Res. 29 509–516

    Google Scholar 

  23. G.T. Howe S.N. Aitken D.B. Neale K.D. Jermstad N.C. Wheeler T.H.H. Chen (2003) ArticleTitleFrom genotype to phenotype: unraveling the complexities of cold adaptation in forest trees Can. J. Bot. 81 1247–1266

    Google Scholar 

  24. K.D. Jermstad D.L. Bassoni K.S. Jech G.A. Ritchie N.C. Wheeler D.B. Neale (2003) ArticleTitleMapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III. QTL by environment interactions Genetics 165 1489–1506 Occurrence Handle1:CAS:528:DC%2BD2cXmsVKksQ%3D%3D Occurrence Handle14668397

    CAS  PubMed  Google Scholar 

  25. K.D. Jermstad D.L. Bassoni K.S. Jech N.C. Wheeler D.B. Neale (2001a) ArticleTitleMapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Spring bud flush Theor. Appl. Genet. 102 1142–1151

    Google Scholar 

  26. K.D. Jermstad D.L. Bassoni N.C. Wheeler T.S. Anekonda S.N. Aitken W.T. Adams D.B. Neale (2001b) ArticleTitleMapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness Theor. Appl. Genet. 102 1152–1158

    Google Scholar 

  27. K.D. Jermstad D.L. Bassoni N.C. Wheeler D.B. Neale (1998) ArticleTitleA sex-averaged genetic linkage map in coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var ‘menziesii’) based on RFLP and RAPD markers Theor. Appl. Genet. 97 797–802

    Google Scholar 

  28. G.R. Johnson N.C. Wheeler S.H. Strauss (2000) ArticleTitleFinancial feasibility of marker-aided-selection in Douglas-fir Can. J. Forest Res. 30 1942–1952

    Google Scholar 

  29. T. Kiyosue K. Yamaguchi-Shinozaki K. Shinozaki (1994) ArticleTitleERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana Plant Physiol. 106 1707

    Google Scholar 

  30. S.A. Knott D.B. Neale M.M. Sewell C.S. Haley (1997) ArticleTitleMultiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine Theor. Appl. Genet. 94 810–820

    Google Scholar 

  31. Krutovsky K.V., Troggio M., Brown G.R., Jermstad K.D. and Neale D.B. 2004. Comparative mapping in the Pinaceae. Genetics 168: 447–461.

    Google Scholar 

  32. Lander E.S. and Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    Google Scholar 

  33. D.B. Neale O. Savolainen (2004) ArticleTitleAssociation genetics of complex traits in conifers Trends Plant Sci. 9 325–330

    Google Scholar 

  34. D.M. O’Malley S.E. McKeand (1994) ArticleTitleMarker-assisted selection for breeding value in forest trees Forest Genet. 1 207–218

    Google Scholar 

  35. G.A. O’Neill W.T. Adams S.N. Aitken (2001) ArticleTitleQuantitative genetics of spring and fall cold hardiness in seedlings from two Oregon populations of coastal Douglas-fir Forest Ecol. Manage. 149 305–318

    Google Scholar 

  36. G.A. O’Neill S.N. Aitken W.T. Adams (2000) ArticleTitleGenetic selection for cold hardiness in coastal Douglas-fir seedlings and saplings Can. J. Forest Res. 30 1799–1807

    Google Scholar 

  37. A.H. Paterson (Eds) (1998) Molecular Dissection of Complex Traits CRC Press LLC Boca Raton, FL

    Google Scholar 

  38. A. Rafalski (2002) ArticleTitleApplications of single nucleotide polymorphisms in crop genetics Curr. Opin. Plant Biol. 5 94–100

    Google Scholar 

  39. N.J. Risch (2000) ArticleTitleSearching for genetic determinants in the new millennium Nature 405 847–856 Occurrence Handle10.1038/35015718 Occurrence Handle1:CAS:528:DC%2BD3cXksV2gtLs%3D Occurrence Handle10866211

    Article  CAS  PubMed  Google Scholar 

  40. M.M. Sewell D.L. Bassoni R.A. Megraw N.C. Wheeler (2000) ArticleTitleIdentification of QTL influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties Theor. Appl. Genet. 101 1273–1281

    Google Scholar 

  41. M.M. Sewell M.F. Davis G.A. Tuskin N.C. Wheeler C.C. Elam D.L. Bassoni D.B. Neale (2002) ArticleTitleIdentification of QTL influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties Theor. Appl. Genet. 104 214–222

    Google Scholar 

  42. M.M. Sewell D.B. Neale (2000) Mapping quantitative traits in forest trees S.M. Jain S.C. Minocha (Eds) Molecular Biology of Woody Plants Kluwer Academic Publishers Dordrecht, The Netherlands 407–424

    Google Scholar 

  43. M.R. Spiegel (1992) Theory and Problems of Probability and Statistics McGraw-Hill NY 113–114

    Google Scholar 

  44. P.J. Stam J.W. van Ooijen (1995) JoinMapTM Version 2.0: Software for the Calculation of Genetic Linkage Maps CPRO-DLO Wageningen, Germany

    Google Scholar 

  45. S.H. Strauss R. Lande G. Namkoong (1992) ArticleTitleLimitations of molecular-marker-aided selection in forest tree breeding Can. J. Forest Res. 22 1050–1061

    Google Scholar 

  46. B. Temesgen G.R. Brown D.E. Harry C.S. Kinlaw M.M. Sewell et al. (2001) ArticleTitleGenetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.) Theor. Appl. Genet. 102 664–675

    Google Scholar 

  47. M.F. Thomashow (1999) ArticleTitlePlant cold acclimation: freezing tolerance genes and regulatory mechanisms Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 571–599

    Google Scholar 

  48. J.M. Thornsberry M.M. Goodman J. Doebley S. Kresovich D. Nielsen E.S. Bucker SuffixIV (2001) ArticleTitle Dwarf8 polymorphisms associate with variation in flowering time Nat. Genet. 28 286–289

    Google Scholar 

  49. R.E. Voorrips (2002) ArticleTitleMapChart: software for the graphical presentation of linkage maps and QTL J. Hered. 93 77–78

    Google Scholar 

  50. P.L. Wilcox T.E. Richardson S.D. Carson (1997) Nature of quantitative trait variation in Pinus radiata: insights from QTL detection experiments R.D. Burdon J.M. Moore (Eds) Proc. IUFRO’997: Genetics of Radiata Pine. FRI Bull. No. 203 Rotorua New Zealand 304–312

    Google Scholar 

  51. P.L. Wilcox S.D. Carson T.E. Richardson R.D. Ball G.P. Horgan P. Carter (2001) ArticleTitleCost-benefit analysis of marker based selection in seed orchard production populations of Pinus radiata Can. J. Forest Res. 31 2213–2224

    Google Scholar 

  52. C.G. Williams D.B. Neale (1992) ArticleTitleConifer wood quality and marker-aided selection: a case study Can. J. Forest Res. 22 1009–1017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Wheeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, N.C., Jermstad, K.D., Krutovsky, K. et al. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Mol Breeding 15, 145–156 (2005). https://doi.org/10.1007/s11032-004-3978-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-004-3978-9

Keywords

Navigation