Skip to main content
Log in

Plant Anthocyanins: Structure, Biosynthesis Regulation, Functions, and Ecology

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The review summarizes current information about anthocyanins (AnC) and their localization in various plant organs and tissues. The pathways and regulation of AnC biosynthesis, the functional significance, and ecological role of these compounds in metabolism and adaptation of plants to environmental conditions are considered. Data on the induction of AnC synthesis under the action of stress factors and during plant growth and development are summarized. Special attention is given to the role of AnC in protection of the photosynthetic apparatus. The prospects for further research and the use of AnC as indicators of plant organism’s state are discussed. The importance of these compounds for humans and human health is mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Nosov, A.M., Secondary metabolism, Fiziologiya rastenii: uchebnik dlya studentov vuzov (Plant Physiology: A Textbook for Students of Universities), Moscow: Izd. dom “Akademiya”, 2007, p. 588.

  2. Selmar, D. and Kleinweichter, M., Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products, Plant Cell Physiol., 2013, vol. 54, p. 817. https://doi.org/10.1093/pcp/pct054

    Article  CAS  PubMed  Google Scholar 

  3. Salam, U., Ullah, S., Tang, Z.-H., Elateeg, A., Khan, J., Khan, A., and Ali, S., Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors, Life, 2023, vol. 13, p. 706. .https://doi.org/10.3390/life13030706

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Croteau, R., Kutchan, T.M., and Lewis, N.G., Natural products (secondary metabolites), in Biochemistry and molecular biology of plants, Buchanan, B., Gruissem, W., and Jones, R., Eds., Rockville, Maryland: Courier Comp., 2000, p. 1250.

    Google Scholar 

  5. Panche, A.N., Diwan, A.D., and Chandra, S.R., Flavonoids: an overview, J. Nutr. Sci., 2016, vol. 5, p. E47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karabanov, I.A., Flavonoidy v mire rastenii (Flavonoids in the Plant World), Minsk: Urajai, 1981.

    Google Scholar 

  7. Chalker-Scott, L., Environmental significance of anthocyanins in plant stress responses, Photochem. Photobiol., 1999, vol. 70, p. 1. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x

    Article  CAS  Google Scholar 

  8. Manetas, Y., Why some leaves are anthocyanic and why most anthocyanic leaves are red?, Flora, 2006, vol. 201, p. 163. https://doi.org/10.1016/j.flora.2005.06.010

    Article  Google Scholar 

  9. Landi, M., Tattini, M., and Gould, K.S., Multiple functional roles of anthocyanins in plant-environment interactions, Environ. Exp. Bot., 2015, vol. 119, p. 4. https://doi.org/10.1016/j.envexpbot.2015.05.012

    Article  CAS  Google Scholar 

  10. Gould, K.S., Jay-Allemand, C., Logan, B.A., Baissac, Y., and Bidel, L.P., When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation, Environ. Exp. Bot., 2018, vol. 154, p. 11. https://doi.org/10.1016/j.envexpbot.2018.02.006

    Article  CAS  Google Scholar 

  11. Agati, G., Brunetti, C., Fini, A., Gori, A., Guidi, L., Landi, M., Sebastiani, F., and Tattini, M., Are flavonoids effective antioxidants in plants? Twenty years of our investigation, Antioxidants, 2020, vol. 9, p. 1098. https://doi.org/10.3390/antiox9111098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lev-Yadun, S., The phenomenon of red and yellow autumn leaves: hypotheses, agreements and disagreements, J. Evol. Biol., 2022, vol. 35, p. 1245. https://doi.org/10.1111/jeb.14069

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nurtiana, W., Anthocyanin as natural colorant: a review, Food ScienTech J., 2019, vol. 1, p. 1. https://doi.org/10.33512/fsj.v1i1.6180

    Article  Google Scholar 

  14. Fernaґndez-Loґpez, J.A., Fernaґndez-Lledo, V., and Angosto, J.M., New insights into red plant pigments: more than just natural colorants, RSC Adv., 2020, vol. 10, p. 24669. https://doi.org/10.1039/D0RA03514A

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Grotewold, E., The genetics and biochemistry of floral pigments, Annu. Rev. Plant Biol., 2006, vol. 57, p. 761. https://doi.org/10.1146/annurev.arplant.57.032905.105248

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida, K., Mori, M., and Kondo, T., Blue flower color development by anthocyanins: from chemical structure to cell physiology, Nat. Prod. Rep., 2009, vol. 26, p. 884. https://doi.org/10.1039/B800165K

    Article  CAS  PubMed  Google Scholar 

  17. Mannino, G., Gentile, C., Ertani, A., Serio, G., and Bertea, C.M., Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—a review, Agriculture, 2021, vol. 11, p. 212. https://doi.org/10.3390/agriculture11030212

    Article  CAS  Google Scholar 

  18. Solovchenko, A.E. and Merzlyak, M.N., Screening of visible and UV radiation as a photoprotective mechanism in plants, Russ. J. Plant. Physiol., 2008, vol. 55, p. 719. https://doi.org/10.1134/S1021443708060010

    Article  CAS  Google Scholar 

  19. Garg, M., Chawla, M., Chunduri, V., Kumar, R., Sharma, S., Sharma, N.K., Kaur, N., Kumar, A., Mundey, J.K., Saini, M.K., and Singh, S.P., Transfer of grain colors to elite wheat cultivars and their characterization, J. Cereal Sci., 2016, vol. 71, p. 138. https://doi.org/10.1016/j.jcs.2016.08.004

    Article  Google Scholar 

  20. Khlestkina, E.K., Shoeva, O.Y., Gordeeva, E.I., Otmakhova, Y.S., Usenko, N.I., Tikhonova, M.A., Tenditnik, M.V., and Amstislavskaya, T.G., Anthocyanins in wheat grain: genetic control, health benefit and bread-making quality, Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology: Proc. Fifth International Scientific Conference PlantGen2019, Novosibirsk, 2019. https://doi.org/10.18699/ICG-PlantGen2019-02

  21. Holton, T.A. and Cornish, E.C., Genetics and biochemistry of anthocyanin biosynthesis, Plant Cell, 1995, vol. 7, p. 1071. https://doi.org/10.1105/tpc.7.7.1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanaka, Y., Sasaki, N., and Ohmiya, A., Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids, Plant J., 2008, vol. 54, p. 733. https://doi.org/10.1111/j.1365-313X.2008.03447.x

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, J., Flavonoid transport mechanisms: how to go, and with whom, Trends Plant Sci., 2015, vol. 20, p. 576. https://doi.org/10.1016/j.tplants.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  24. Gu, K-D., Wang, C-K., Hu, D-G., and Hao, Y-J., How do anthocyanins paint our horticultural products?, Sci. Hortic., 2019, vol. 249, p. 257. https://doi.org/10.1016/j.scienta.2019.01.034

    Article  CAS  Google Scholar 

  25. Poustka, F., Irani, N.G., Feller, A., Lu, Y., Pourcel, L., Frame, K., and Grotewold, G., A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions, Plant Physiol., 2007, vol. 145, p. 1323. https://doi.org/10.1104/pp.107.105064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quattrocchio, F., Verweij, W., Kroon, A., Spelt, C., Mol, J., and Koes, R., PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway, Plant Cell, 2006, vol. 18, p. 1274. https://doi.org/10.1105/tpc.105.034041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin, X., Wang, T., Zhang, M., Zhang, Y., Irfan, M., Chen, L., and Zhang, L., Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants, Biotechnol. Biotechnol. Equip., 2021, vol. 35, p. 1214. https://doi.org/10.1080/13102818.2021.1960605

    Article  CAS  Google Scholar 

  28. Pelletier, M.K., Murrell, J.R., and Shirley, B.W., Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (further evidence for differential regulation of “early” and “late” genes), Plant Physiol., 1997, vol. 113, p. 1437. https://doi.org/10.1104/pp.113.4.1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo, N., Han, S., Zong, M., Wang, G., Zheng, S., and Liu, F., Identification and differential expression analysis of anthocyanin biosynthetic genes in leaf color variants of ornamental kale, BMC genom., 2019, vol. 20, p. 1. https://doi.org/10.1186/s12864-019-5910-z

    Article  CAS  Google Scholar 

  30. Xu, W., Dubos, C., and Lepiniec, L., Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes, Trends Plant Sci., 2015, vol. 20, p. 176. https://doi.org/10.1016/j.tplants.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  31. Li, J., Han, G., Sun, C., and Sui, N., Research advances of MYB transcription factors in plant stress resistance and breeding, Plant Signal. Behav., 2019, vol. 14, p. e1613131 https://doi.org/10.1080/15592324.2019.1613131

    Article  CAS  Google Scholar 

  32. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L., MYB transcription factors in Arabidopsis, Trends Plant Sci., 2010, vol. 15, p. 573. https://doi.org/10.1016/j.tplants.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  33. Lin-Wang, K.L., Bolitho, K., Grafton, K., Kortstee, A., Karunairetnam, S., McGhie, T.K., Espley, R.V., Hellens, R.P., and Allan, A.C., An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae, BMC Plant Biol., 2010, vol. 10, p. 50. https://doi.org/10.1186/1471-2229-10-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, L., Hu, B., Qin, Y., Hu, G., and Zhao, J., Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors, Plant Physiol. Biochem., 2019, vol. 136, p. 178. https://doi.org/10.1016/j.plaphy.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  35. Shi, L., Chen, X., Wang, K., Yang, M., Chen, W., Yang, Z., and Cao, S., MrMYB6 from Chinese bayberry (Myrica rubra) negatively regulates anthocyanin and proanthocyanidin accumulation, Front. Plant Sci., 2021, vol. 12, p. 685654. https://doi.org/10.3389/fpls.2021.685654

    Article  PubMed  PubMed Central  Google Scholar 

  36. Muhammad, N., Uddin, N. Khali, M., Khan, U., Ali, N, Ali, K., and Jones, D.A., Diverse role of basic Helix-Loop-Helix (bHLH) transcription factor superfamily genes in the fleshy fruit-bearing plant species, Czech J. Genet. Plant Breed., 2023, vol. 59, p. 1. https://doi.org/10.17221/2/2022-CJGPB

    Article  CAS  Google Scholar 

  37. Mishra, A.K., Puranik, S., and Prasad, M., Structure and regulatory networks of WD40 protein in plants, J. Plant Biochem. Biotechnol., 2012, vol. 21, p. 32. https://doi.org/10.1007/s13562-012-0134-1

    Article  CAS  Google Scholar 

  38. Liu, X., Feng, C., Zhang, M., Yin, X., Xu, C., and Chen, K., The MrWD40-gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation, Plant Mol. Biol. Rep., 2013, vol. 31, p. 1474. https://doi.org/10.1007/s11105-013-0621-0

    Article  CAS  Google Scholar 

  39. Strygina, K.V. and Khlestkina, E.K., Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae tribe, Russ. J. Genet., 2019, vol. 55, p. 1398. https://doi.org/10.1134/S1022795419110152

    Article  CAS  Google Scholar 

  40. Liu, H., Liu, Z., Wu, Y., Zheng, L., and Zhang, G., Regulatory mechanisms of anthocyanin biosynthesis in apple and pear, Int. J. Mol. Sci., 2021, vol. 22, p. 8441. https://doi.org/10.3390/ijms22168441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin, S.-W., Rahim, M.A., Kim, H.-T., Park, J.-I., Kang, J.-G., and Nou, I.-S., Molecular analysis of anthocyanin-related genes in ornamental cabbag, Genome, 2018, vol. 61, p. 111. https://doi.org/10.1139/gen-2017-0098

    Article  CAS  PubMed  Google Scholar 

  42. Heng, S., Wang, L., Yang, X., Huang, H., Chen, G., Cui, M., Liu, M., Lv, Q., Wan, Z., Shen, J., and Fu, T., Genetic and comparative transcriptome analysis revealed DEGs involved in the purple leaf formation in Brassica juncea, Front. Genet., 2020, vol. 11, p. 322. https://doi.org/10.3389/fgene.2020.00322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mazza, G., Cacace, J.E., and Kay, C.D., Methods of analysis for anthocyanins in plants and biological fluids, J. AOAC Int., 2004, vol. 87, p. 129.

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J., Durst, R. W., and Wrolstad, R., Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study, J. AOAC Int., 2005, vol. 88, p. 1269. https://doi.org/10.1093/jaoac/88.5.1269

    Article  CAS  PubMed  Google Scholar 

  45. Marpaung, A. and Tjahjadi, K., The analysis of monomeric anthocyanin by pH differential method is not appropriate for certain anthocyanins, Proc. 16th ASEAN Food Conference Outlook and Opportunities of Food Technology and Culinary for Tourism Industry, Sanur-Bali, Indonesia, 2019. https://doi.org/10.5220/0009985400002964

  46. Truong, V.-D., Deighton, N., Thompson, R.T., McFeeters, R.F., Dean, L.O., Pecota, K.V., and Yencho, G.C., Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS, J. Agric. Food Chem., 2010, vol. 58, p. 404. https://doi.org/10.1021/jf902799a

    Article  CAS  PubMed  Google Scholar 

  47. Saha, S, Singh, J, Paul, A, Sarkar, R, Khan, Z, and Banerjee, K., Anthocyanin profiling using UV-vis spectroscopy and liquid chromatography mass spectrometry, J. AOAC Int., 2020, vol. 103, p. 23. https://doi.org/10.5740/jaoacint.19-0201

    Article  PubMed  Google Scholar 

  48. Merzlyak, M., Gitelson, A., Chivkunova, O., Solovchenko, A., and Pogosyan, S., Application of reflectance spectroscopy for analysis of higher plant pigments, Russ. J. Plant Physiol., 2003, vol. 50, p. 704. https://doi.org/10.1023/A:1025608728405

    Article  CAS  Google Scholar 

  49. Gitelson, A. and Solovchenko, A., Non-invasive quantification of foliar pigments: possibilities and limitations of reflectance- and absorbance-based approaches, J. Photochem. Photobiol. B: Biol., 2018, vol. 178, p. 537. https://doi.org/10.1016/j.jphotobiol.2017.11.023

    Article  CAS  Google Scholar 

  50. Dymova, O.V., Zakhozhiy, I.G., and Golovko, T.K., Age and adaptive changes in the photosynthetic apparatus of leaves in winter green herbaceous plant Ajuga reptans L. in the natural conditions of the taiga zone, Russ. J. Plant Physiol., 2023, vol. 70, p. 114.

    Article  CAS  Google Scholar 

  51. Dooner, H.K., Robbins, T.P., and Jorgensen, R.A., Genetic and developmental control of anthocyanin biosynthesis, Annu. Rev. Genet., 1991, vol. 25, p. 173. https://doi.org/10.1146/annurev.ge.25.120191.001133

    Article  CAS  PubMed  Google Scholar 

  52. Li, J., Ren, L., Gao, Z., Jiang, M., Liu, Y., Zhou, L., He, J., and Chen, H., Combined transcriptomic and proteomic analysis constructs a new model for light induced anthocyanin biosynthesis in eggplant (Solanum melongena L.), Plant Cell Environ., 2017, vol. 40, p. 3069. https://doi.org/10.1111/pce.13074

    Article  CAS  PubMed  Google Scholar 

  53. Song, T., Li, K., Wu, T., Wang, Y., Zhang, X., Xu, X., Yao, Y., and Han, Z., Identification of new regulators through transcriptom analysis that regulate anthocyanin biosynthesis in apple leaves at low temperature, PloS ONE, 2019, vol. 14, p. e0210672. https://doi.org/10.1371/journal.pone.0210672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van den Ende, W. and El-Esawe, S.K., Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses?, Environ. Exp. Bot., 2014, vol. 108, p. 4. https://doi.org/10.1016/j.envexpbot.2013.09.017

    Article  CAS  Google Scholar 

  55. Margalha, L. Valerio, C., and Baena-Gonzaґlez, E., Plant SnRK1 kinases: structure, regulation, and function, AMP-activated Protein Kinase, 2016, vol. 107, p. 403. https://doi.org/10.1007/978-3-319-43589-3_17

    Article  CAS  Google Scholar 

  56. Jezek, M., Allan, A.C., Jones, J.J., and Geilfus, C.-M., Why do plants blush when they are hungry?, New Phytol., 2023, vol. 239, p. 494. https://doi.org/10.1111/nph.18833

    Article  PubMed  Google Scholar 

  57. Zhou, Z., Tiantian Zhi, T., Liu, Y., Chen, Y., and Ren, C., Tyrosine induces anthocyanin biosynthesis in Arabidopsis thaliana, Am. J. Plant Sci., 2014, vol. 5, p. 328. https://doi.org/10.4236/ajps.2014.53045

    Article  CAS  Google Scholar 

  58. Zhang, N., Qi, Y., Zhang, H.-J., Wang, X., Li, H., Shi, Y., and Guo, Y.-D., Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way, Front. Plant Sci., 2016, vol. 7, p. 1804. https://doi.org/10.3389/fpls.2016.01804

    Article  PubMed  PubMed Central  Google Scholar 

  59. Karageorgou, P. and Manetas, Y., The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light, Tree Physiol., 2006, vol. 26, p. 613.https://doi.org/10.1093/treephys/26.5.613

    Article  CAS  PubMed  Google Scholar 

  60. Kariñho-Betancourt, E., Plant-herbivore interections and secondary metabolites of plants: ecological and evolutionary perspectives, Bot Sci., 2018, vol. 96, p. 35. https://doi.org/10.17129/botsci.1860

    Article  Google Scholar 

  61. Manetas, Y., Drinia, A., and Petropoulou, Y., High contents of anthocyanins in young leaves are correlated to low pools of xanthophyll cycle components and low risk of photoinhibition, Photosynthetica, 2002, vol. 40, p. 349. https://doi.org/10.1023/A:1022614722629

    Article  CAS  Google Scholar 

  62. Neill, S.O. and Gould, K.S., Anthocyanins in leaves: light attenuators or antioxidants?, Funct. Plant Biol., 2003, vol. 30, p. 865. https://doi.org/10.1071/FP03118

    Article  CAS  PubMed  Google Scholar 

  63. Drumm-Herrel, H. and Mohr, I., Photostability of seedlings differing in their potential to synthesize anthocyanin, Physiol. Plant., 1985, vol. 64, p. 60. https://doi.org/10.1111/j.1399-3054.1985.tb01213.x

    Article  CAS  Google Scholar 

  64. Neill, S.O., Gould, K.S., Kilmartin, P.A., Mitchell, K.A., and Markham, K.R., Antioxidant activities of red versus green leaves in Elatostema rugosum, Plant Cell Environ., 2002, vol. 25, p. 539. https://doi.org/10.1046/j.1365-3040.2002.00837.x

    Article  CAS  Google Scholar 

  65. Yu, Z.-C., Lin, W., Zheng, X.-T., Chow, W.S., Luo, Y.-N., Cai, M.-N., and Peng, C.L., The relationship between anthocyanin accumulation and photoprotection in young leaves of two dominant tree species in subtropical forests in different seasons, Photosynth. Res., 2021, vol. 149, p. 41. https://doi.org/10.1007/s11120-020-00781-4

    Article  CAS  PubMed  Google Scholar 

  66. Hughes, N.M., Morley, C.B., and Smith, W.K., The coordination of anthocyanin decline and photosynthetic maturation in developing leaves of three deciduous tree species, New Phytol., 2007, vol. 175, p. 675.https://doi.org/10.1111/j.1469-8137.2007.02133.x

    Article  CAS  PubMed  Google Scholar 

  67. Solovchenko, A.E. and Chivkunova, O.B., Physiological role of anthocyanin accumulation in common hazel juvenile leaves, Russ. J. Plant Physiol., 2011, vol. 58, p. 674. https://doi.org/10.1134/S1021443711040157

    Article  CAS  Google Scholar 

  68. Zhu, H., Zhang, T.-J., Zheng, J., Huang, X.-D., Yu, Z.-C., Peng, C.-L., and Chow, W.S., Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter, Photosynthetica, 2018, vol. 56, p. 445. https://doi.org/10.1007/s11099-017-0740-1

    Article  CAS  Google Scholar 

  69. Borek, M., Baczek-Kwinta, R., and Rapacz, M., Photosynthetic activity of variegated leaves of Coleus x hybridus hort. cultivars characterised by chlorophyll fluorescence techniques, Photosynthetica, 2016, vol. 54, p. 331. https://doi.org/10.1007/s11099-016-0225-7

    Article  CAS  Google Scholar 

  70. Trojak, M. and Skowron, E., Role of anthocyanins in high-light stress response, World Sci. News, 2017, vol. 81, p. 150.

    CAS  Google Scholar 

  71. Moustaka, J., Tanou, G., Giannakoula, A., Adamakis, I.-D. S., Panteris, E., Eleftheriou, E.P., and Moustakas, M., Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress, Environ. Exp. Bot., 2020, vol. 175, p. 104065 https://doi.org/10.1016/j.envexpbot.2020.104065

    Article  CAS  Google Scholar 

  72. Nielsen, S.L. and Simonsen, A.-M., Photosynthesis and photoinhibition in two differently coloured varieties of Oxalis triangularis—the effect of anthocyanin content, Photosynthetica, 2011, vol. 49, p. 346. https://doi.org/10.1007/s11099-011-0042-y

    Article  CAS  Google Scholar 

  73. Shelyakin, M.A., Zakhozhy, I.G., Tabalenkova, G.N., Dymova, O.V., Malyshev, R.V., Dalke, I.V., and Golovko, T.K., Anthocyanin content, activity of antioxidant and energy dissipating systems in the leaves of Hylotelephium triphyllum (Haw.) Holub—a representative of the family Crassulaceae in the North, Materials of the II International Symposium “Molecular Aspects of Plant Redox Metabolism” and the International Scientific School “The Role of Reactive Oxygen Species in Plant Life”, Ufa, 2017, p. 432.

  74. Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., and Naqvi, K.R., Light absorption by anthocyanins in juvenile, stressed, and senescing leaves, J. Exp. Bot., 2008, vol. 59, p. 3903. https://doi.org/10.1093/jxb/ern230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pietrini, F., Iannelli, M.A., and Massacci, A., Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis, Plant Cell Environ., 2002, vol. 25, p. 1251. https://doi.org/10.1046/j.1365-3040.2002.00917.x

    Article  CAS  Google Scholar 

  76. Zhang, J., Li, S., An, H., Zhang, X., and Zhou, B., Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities, Front. Plant Sci., 2022, vol. 13, p. 1073332. https://doi.org/10.3389/fpls.2022.1073332

    Article  PubMed  PubMed Central  Google Scholar 

  77. Singh, P., Singh, A., and Choudhary, K.K., Revisiting the role of phenylpropanoids in plant defense against UV-B stress, Plant Stress, 2023, vol. 7, p. 100143. https://doi.org/10.1016/j.stress.2023.100143

    Article  CAS  Google Scholar 

  78. Bi, X., Zhang, J., Chen, C., Zhang, D., Li, P., and Ma, F., Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel, Food Chem., 2014, vol. 152, p. 205. https://doi.org/10.1016/j.foodchem.2013.11.088

    Article  CAS  PubMed  Google Scholar 

  79. Zakhozhiy, I.G., Malyshev, R.V., Dymova, O.V., Tabalenkova, G.N., and Golovko, T.K., Regulation of metabolism of greenhouse lettuce plants (Lactuca sativa L.) by UV exposure radiation, Izv. TSKhA, 2017, vol. 6, p. 42.

    Google Scholar 

  80. Renner, S.S. and Zohner, C.M., Trees growing in Eastern North America experience higher autumn solar irradiation than their European relatives, but is nitrogen limitation another factor explaining anthocyanin-red autumn leaves? A comment on Peña-Novas and Marchetti 2021, J. Evol. Biol., 2022, vol. 35, p. 183. https://doi.org/10.1111/jeb.13903

    Article  CAS  PubMed  Google Scholar 

  81. Archetti, M., Classification of hypotheses for the evolution of autumn colours, Oikos, 2009, vol. 118, p. 328. https://doi.org/10.1111/j.1600-0706.2008.17164.x

    Article  ADS  Google Scholar 

  82. Thomas, H., Huang, L., Young, M., and Ougham, H., Evolution of plant senescence, BMC Evol. Biol., 2009, vol. 9, p. 163. .https://doi.org/10.1186/1471-2148-9-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lev-Yadun, S. and Gould, K.S., What do red and yellow autumn leaves signal?, Bot. Rev., 2007, vol. 73, p. 279.

    Article  Google Scholar 

  84. Hoch, W.A., Zeldin, E.L., and McGown, B.H., Physiological significance of anthocyanins during autumnal leaf senescence, Tree Physiol., 2001, vol. 21, p. 1. https://doi.org/10.1093/treephys/21.1.1

    Article  CAS  PubMed  Google Scholar 

  85. Yin, G., Wang, Y., Xiao, Y., Yang, J., Wang, R., Jiang, Y., and Jiang, Y., Relationships between leaf color changes, pigment levels, enzyme activity, photosynthetic fluorescence characteristics and chloroplast ultrastructure of Liquidambar formosana Hance, J. For. Res., 2022, vol. 33, p. 1559. https://doi.org/10.1007/s11676-021-01441-6

    Article  CAS  Google Scholar 

  86. Hoch, W.A., Singsaas, E.L., and McCown, B.H., Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels, Plant Physiol., 2003, vol. 133, p. 1296. https://doi.org/10.1104/pp.103.027631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. George, C.O., Hughes, N.M., and Neufeld, H.S., Coevolution and photoprotection as complementary hypotheses for autumn leaf reddening: a nutrient-centered perspective, New Phytol., 2022, vol. 233, p. 22. https://doi.org/10.1111/nph.17735

    Article  PubMed  Google Scholar 

  88. Mattila, H. and Tyystjärvi, E., Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms, Tree Physiol., 2023, vol. 43, p. 751. .https://doi.org/10.1093/treephys/tpad010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steyn, W.J., Wand, S.J.E., Holcroft, D.M., and Jacobs, G., Anthocyanins in vegetative tissues: a proposed unified function in photoprotection, New Phytol., 2002, vol. 155, p. 349. https://doi.org/10.1046/j.1469-8137.2002.00482.x

    Article  CAS  PubMed  Google Scholar 

  90. Akula, R. and Ravishankar, G.A., Influence of abiotic stress signals on secondary metabolites in plants, Plant Signal. Behav., 2011, vol. 6, p. 1720. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  91. Alkhsabah, I.A., Alsharafa, K.Y., and Kalaji, H.M., Effects of abiotic factors on internal homeostasis of Mentha spicata leaves, Appl. Ecol. Environ. Res., 2018, vol. 16, p. 2537. https://doi.org/10.15666/aeer/1603_25372564

    Article  Google Scholar 

  92. Mbarki, S., Sytar, O., Zivcak, M., Abdelly, C., Cerda, A., and Brestic, M., Anthocyanins of coloured wheat genotypes in specific response to salt stress, Molecules, 2018, vol. 23, p. 1518. https://doi.org/10.3390/molecules23071518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chupakhina, G.N. and Maslennikov, P.V., Plant adaptation to oil stress, Ekol., 2004, vol. 5, p. 330.

    Google Scholar 

  94. Buzmakov, S.A., Khotyanovskaya, Yu.V., Andreev, D.N., Egorova, D.O., and Nazarov, A.V., Indication of the state of ecosystems in the conditions of oilfield technogenesis, Geogr. vest., 2018, vol. 4, p. 90.

    Google Scholar 

  95. Lila, M.A., Anthocyanins and human health: an in vitro investigative approach, J. Biomed. Biotechnol., 2004, vol. 5, p. 306. https://doi.org/10.1155/S111072430440401X

    Article  Google Scholar 

  96. Mazza, G.J., Anthocyanins and heart health, Ann. Ist. Super. Sanita., 2007, vol. 43, p. 369.

    CAS  PubMed  Google Scholar 

  97. Pascual-Teresa, S. and Sanchez-Ballesta, M.T., Anthocyanins: from plant to health, Phytochem. Rev., 2008, vol. 7, p. 281. https://doi.org/10.1007/s11101-007-9074-0

    Article  CAS  Google Scholar 

  98. Tsuda, T., Dietary anthocyanin rich plants: biochemical basis and recent progress in health benefits studies, Mol. Nutr. Food Res., 2012, vol. 56, p. 159. https://doi.org/10.1002/mnfr.201100526

    Article  CAS  PubMed  Google Scholar 

  99. Tarakhovsky, Yu.S., Kim, Yu.A., Abdrasilov, B.S., and Muzafarov, E.N., Flavonoids: biochemistry, biophysics, medicine, Pushchino: Synchrobook, 2013.

    Google Scholar 

  100. Yudina, R.S., Gordeeva, E.I., Shoeva, O.Yu., Tikhonova, M.A., and Khlestkina, E.K., Anthocyanins as functional food components, Vavilov Journal of Genetics and Breeding, 2021, vol. 25, p. 178. https://doi.org/10.18699/VJ21.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Dr. M.A. Shelyakin for help in preparing the figures and bibliography.

Funding

This work was carried out within the framework of the theme of state budget research and development “Photosynthesis, Respiration, and Bioenergetics of Plants and Phototrophic Organisms (Physiological–Biochemical, Molecular–Genetic, and Environmental Aspects),” no. 122040600021-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Golovko.

Ethics declarations

CONFLICT OF INTEREST

The author of this work declares that she has no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by A. Bulychev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: AnC—anthocyanins; PSII—photosystem II; PSA—photosynthetic apparatus; qP and NPQ—photochemical and nonphotochemical quenching of chlorophyll a fluorescence in PSII; ROS—reactive oxygen species; TF—transcription factor; VXC—violaxanthin cycle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovko, T.K. Plant Anthocyanins: Structure, Biosynthesis Regulation, Functions, and Ecology. Russ J Plant Physiol 70, 161 (2023). https://doi.org/10.1134/S1021443723700292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700292

Keywords:

Navigation