Skip to main content
Log in

Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter

  • Published:
Photosynthetica

Abstract

Anthocyanins and nonphotochemical quenching (NPQ) are two important tools that provide photoprotection in plant leaves. In order to understand how plants use these tools for acclimation to changing seasonal conditions, we investigated pigments, antioxidative capacity, and photosynthesis in leaves of an evergreen tree (Acmena acuminatissima) in two contrasting seasons. Young leaves of A. acuminatissima appeared in distinct colors, being light green in summer and red in winter due to the presence of anthocyanins. In the winter young leaves, anthocyanins contributed less than 2% to the antioxidant pool. In the summer, young leaves had higher NPQ than that of mature leaves, but in the winter, they did not derive any NPQ-related advantage over mature leaves. These results suggest that the accumulation of anthocyanins in young leaves in the winter may compensate for the insufficient photoprotection afforded by NPQ and that anthocyanins function as a light attenuator to protect the photochemical apparatus against excess light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Car:

carotenoid

Chl:

chlorophyll

DPPH:

1,1-diphenyl-2-picrylhydrazyl

E :

transpiration rate

ETR:

electron transport rate

Fv/Fm :

maximum photochemical efficiency of PSII

g s :

stomatal conductance

ML:

mature leaves

NPQ:

nonphotochemical quenching

P N :

net light-saturated photosynthetic rate

ΦPSII :

effective photochemical efficiency of PSII

References

  • Ainsworth E.A., Gillespie K.M.: Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent.–Nat. Protoc. 2: 875–877, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Albert N.W., Lewis D.H., Zhang H. et al.: Light-induced vegetative anthocyanin pigmentation in petunia.–J. Exp. Bot. 60: 2191–2202, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.–Photosynth. Res. 25: 173–185, 19

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.–Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Feild T.S., Lee D.W., Holbrook N.M.: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of redosier dogwood.–Plant Physiol. 127: 566–574, 2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92 1989.

    Article  CAS  Google Scholar 

  • Gould K.S., Kuhn D.N., Lee D.W. et al.: Why leaves are sometimes red.–Nature 378: 241–242, 1995.

    Article  CAS  Google Scholar 

  • Gould K.S., Markham K.R., Smith R.H. et al.: Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn.–J. Exp. Bot. 51: 1107–1115, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Guo Y.-H., Cao K.-F.: Effect of night chilling on photosynthesis of two coffee species grown under different irradiances.–J. Hortic. Sci. Biotech. 79: 713–716, 2004.

    Article  CAS  Google Scholar 

  • Hakala M., Tuominen I., Keränen M. et al.: Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II.–BBA-Bioenergetics 1706: 68–80, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Havaux M., Kloppstech K.: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants.–Planta 213: 953–966, 2001.

    Article  CAS  Google Scholar 

  • He J., Yang W., Qin L. et al. Photoinactivation of photosystem II in wild type and chlorophyll b-less barley leaves: Which mechanism dominates depends on experimental circumstances.–Photosynth. Res. 126: 399–407, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Heimler D., Vignolini P., Dini M.G. et al.: Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. Dry beans.–J. Agr. Food Chem. 53: 3053–3056, 2005.

    Article  CAS  Google Scholar 

  • Hendrickson L., Ball M.C., Osmond C.B. et al.: Assessment of photoprotection mechanisms of grapevines at low temperature.–Funct. Plant Biol. 30: 631–642 2003.

    Article  CAS  Google Scholar 

  • Hipskind J., Wood K., Nicholson R.L.: Localized stimulation of anthocyanin accumulation and delineation of pathogen ingress in maize genetically resistant Tobipolaris maydisrace O.–Physiol. Mol. Plant Pathol. 49: 247–256, 1996.

    Article  CAS  Google Scholar 

  • Hirotsu N., Makino A., Ushio A. et al.: Changes in the thermal dissipation and the electron flow in the water–water cycle in rice grown under conditions of physiologically low temperature.–Plant Cell Physiol. 45: 635–644, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hu W., Song X., Shi K. et al.: Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling.–Photosynthetica 46: 581–588, 2008.

    Article  CAS  Google Scholar 

  • Hughes N.M., Neufeld H.S., Burkey K.O.: Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata.–New Phytol. 168: 575–587, 20

    Article  PubMed  CAS  Google Scholar 

  • Hughes N.M., Morley C.B., Smith W.K.: Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species.–New Phytol. 175: 675–685, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hughes N.M., Smith W.K.: Attenuation of incident light in Galax urceolata (Diapensiaceae): Concerted influence of adaxial and abaxial anthocyanic layers on photoprotection.–Am. J. Bot. 94: 784–790, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Karageorgou P., Manetas Y.: The importance of being red when young: Anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light.–Tree Physiol. 26: 613–621, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Koćcielniak J., Biesaga-Koćcielniak J.: Photosynthesis and nonphotochemical excitation quenching components of chlorophyll excitation in maize and field bean during chilling at different photon flux density.–Photosynthetica 44: 174–180, 2006.

    Article  CAS  Google Scholar 

  • Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO2 fixation in leaves.–Physiol. Plantarum 86: 180–187, 1992.

    Article  CAS  Google Scholar 

  • Kratsch H.A., Wise R.R.: The ultrastructure of chilling stress.–Plant Cell Environ. 23: 337–350, 2000.

    Article  CAS  Google Scholar 

  • Kumar V., Sharma S.S.: Nutrient deficiency-dependent anthocyanin development in Spirodela polyrhiza L. Schleid.–Biol. Plantarum 42: 621–624, 1999.

    Article  CAS  Google Scholar 

  • Laine P.L., Bigot J., Ourry A. et al.: napus L.–New Phytol. 127: 675–683, 1994.

    Article  CAS  Google Scholar 

  • Lea U.S., Slimestad R., Smedvig P. et al: Nitrogen deficiency enhances expression of specific MYB and BHLH transcription factors and accumulation of end products in the flavonoid pathway.–Planta 225: 1245–1253, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Liakopoulos G., Nikolopoulos D., Klouvatou A. et al.: The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera).–Ann. Bot.-London 98: 257–265, 2006.

    Article  CAS  Google Scholar 

  • Liu X., Ardo S., Bunning M. et al.: Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado.–LWT-Food Sci. Technol. 40: 552–557, 2007.

    Article  CAS  Google Scholar 

  • Mai J., Herbette S., Vandame M. et al.: Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell. Arg.–Trees 23: 863–874, 2009.

    Article  CAS  Google Scholar 

  • Mai J., Herbette S., Vandame M. et al.: Contrasting strategies to cope with chilling stress among clones of a tropical tree, Hevea brasiliensis.–Tree Physiol. 30: 1391–1402, 20

    Article  PubMed  Google Scholar 

  • Müller P., Li X.-P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller-Moulé P., Conklin P.L., Niyogi K.K.: Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.–Plant Physiol. 128: 970–977, 20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neill S.O., Gould K.S., Kilmartin P.A. et al.: Antioxidant activities of red versus green leaves in Elatostema rugosum.–Plant Cell Environ. 25: 539–547 20

    Article  CAS  Google Scholar 

  • Neill S.O., Gould K.S.: Anthocyanins in leaves: Light attenuators or antioxidants?–Funct. Plant Biol. 30: 865–873, 2003.

    Article  CAS  Google Scholar 

  • Niyogi K.K.: Photoprotection revisited: Genetic and molecular approaches.–Annu. Rev. Plant Phys. 50: 333–359, 1999.

    Article  CAS  Google Scholar 

  • Ohnishi N., Allakhverdiev S.I., Takahashi S. et al.: Two-step mechanism of photodamage to photosystem II: Step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center.–Biochemistry 44: 8494–8499, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Oxborough K., Baker N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and Fv’/Fm’; without measuring Fo’.–Photosynth. Res. 54: 135–142 1997.

    Article  CAS  Google Scholar 

  • Peng S., Wang B.: Forest succession of Dinghushan, Guangdong, China.–Chin. J. Bot. 7: 75–80, 1994.

    Google Scholar 

  • Pietrini F., Iannelli M., Massacci A.: Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis.–Plant Cell Environ. 25: 1251–1259, 2002.

    Article  CAS  Google Scholar 

  • Saha M.R, Hasan S.M.R., Akter R. et al.: In vitro free radical scavenging activity of methanol extract of the leaves of Mimusops elengi Linn.–Bangl. J. Vet. Med. 6: 197–202, 2008.

    Google Scholar 

  • Steyn W.J., Wand S.J., Jacobs G. et al.: Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel.–Physiol. Plantarum 136: 461–472, 2009.

    Article  CAS  Google Scholar 

  • Tucić B., Vuleta A., Jovanović S.M.: Protective function of foliar anthocyanins: In situ experiments on a sun-exposed population of Iris pumila L. (Iridaceae).–Pol. J. Ecol. 57: 779–783, 2009.

    Google Scholar 

  • van den Berg A.K., Perkins T.D.: Contribution of anthocyanins to the antioxidant capacity of juvenile and senescing sugar maple (Acer saccharum) leaves.–Funct. Plant Biol. 34: 714–719, 2007.

    Article  Google Scholar 

  • Wang L.-Z., Wang L.-M., Xiang H.-T. et al.: Relationship of photosynthetic efficiency and seed-setting rate in two contrasting rice cultivars under chilling stress.–Photosynthetica 54: 581–588, 2016.

    Article  CAS  Google Scholar 

  • Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution.–J. Plant Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

  • Zeng X.Q., Chow W.S., Su L.J. et al.: Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light.–Physiol. Plantarum 138: 215–225, 2010.

    Article  CAS  Google Scholar 

  • Zhang K.-M., Yu H.-J., Shi K. et al.: Photoprotective roles of anthocyanins in Begonia semperflorens.–Plant Sci. 179: 202–208, 20

    Article  CAS  Google Scholar 

  • Zhang Q., Zhang T.-J., Chow W.S. et al.: Photosynthetic characteristics and light energy conversions under different light environments in five tree species occupying dominant status at different stages of subtropical forest succession.–Funct. Plant Biol. 42: 609–619, 2015.

    Article  CAS  Google Scholar 

  • Zhang T.-J., Chow W.S., Liu X.-T. et al: A magic red coat on the surface of young leaves: Anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition.–Tree Physiol. 36: 1296–1306, 2016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C.-L. Peng or W. S. Chow.

Additional information

Acknowledgements: This work was funded by the National Natural Science Foundation of China (31570398, 31270287). The study was also supported by the key program of Guangdong Province Natural Science Foundation (2014A070713039; 2015A030311023; 2016A030303063)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhang, TJ., Zheng, J. et al. Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter. Photosynthetica 56, 445–454 (2018). https://doi.org/10.1007/s11099-017-0740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0740-1

Additional key words

Navigation