Skip to main content
Log in

Establishing a Long-Term Cultivated Embryogenic Culture of Papaver rupifragum Boiss. & Reut. and Its Cytological and Biochemical Study

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

An embryogenic culture of poppy Papaver rupifragum Boiss. & Reut., which was initiated on the roots of seedlings grown from seeds on MS medium with the addition of 1 mg/L IBA, was obtained for the first time. Subsequent maintenance of the embryogenic culture was carried out on a hormone-free MS medium. Long-term cultivation and preservation of the embryogenic capacity of the culture (more than 5 years) was supported by cycles of adventitious embryoidogenesis, including the formation of callus on preexisting embryoids and the induction of new embryoids from their subsurface cells. In this regard, the resulting P. rupifragum culture can be considered as a differentiated culture in which the callus stage is an intermediate stage of development. It has been established that the surface of newly formed embryoids is covered with a surface network of extracellular matrix formed by polysaccharides, lipids, and terpenes. Histological analysis showed that embryogenic P. rupifragum culture is characterized by the formation of complexes of fused embryoids (CFE), which presumably arise either as a result of cleavage polyembryony or during the synchronous development of nearby embryoids. A study of the histology and ultrastructure of CFE revealed that the fusion of embryoids is caused by disturbances in the formation of the epidermis and cuticle. Histochemical studies have established that embryogenic P. rupifragum culture synthesizes and accumulates triacylglycerides, polysaccharides, phenolic compounds (PCs), terpenes, and alkaloids. It has been shown that the quantitative and qualitative composition of the PCs and alkaloids of the P. rupifragum culture depended on the age of the culture and its differentiation, adjustable by growing conditions (light, dark). Differentiated embryogenic P. rupifragum culture retains the ability to form embryoids on a hormone-free MS medium for a long time of cultivation and can be the basis for the further development of biotechnological methods for producing medicinal compounds for cosmetology and pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fazili, M.A., Bashir, I., Ahmad, M., Yaqoob, U., and Geelani, S.N., In vitro strategies for the enhancement of secondary metabolite production in plants: a review, Bulletin of the National Research Centre, 2022, vol. 46, p. 1. https://doi.org/10.1186/s42269-022-00717-z

    Article  Google Scholar 

  2. Butnariu, M.M., Quispe, C., Herrera-Bravo, J., Pentea, M., Sarac, I., Küşümler, A.S., Özçelik, B., Painuli, S., Semwal, P., Imran, M., Gondal, T.A., Emamzadeh-Yazdi, S., Lapava, N., Yousaf, Z., Kumar, M., et al., Papaver plants: current insights on phytochemical and nutritional composition along with biotechnological applications, Oxid. Med. Cell. Long., 2022 vol. 2022, p. 1. https://doi.org/10.1155/2022/2041769

    Article  CAS  Google Scholar 

  3. Nessler, C.L., Somatic embryogenesis in the opium poppy, Papaver somniferum, Physiol. Plant., 1982, vol. 55, p. 453. https://doi.org/10.1111/j.1399-3054.1982.tb04526.x

    Article  Google Scholar 

  4. Kassem, M.A. and Jacquin, A., Somatic embryogenesis, rhizogenesis, and morphinan alkaloids production in two species of opium poppy, J. Biomed. Biotech., 2001, vol. 1, p. 70. https://doi.org/10.1155/S1110724301000237

    Article  Google Scholar 

  5. Kutchan, T.M., Ayabe, S., Krueger, R.J., Coscia, E.M., and Coscia, C.J., Cytodifferentiation and alkaloid accumulation in cultured cells of Papaver bracteatum, Plant Cell Reports, 1983, vol. 2, p. 281. https://doi.org/10.1007/BF00270181

    Article  CAS  PubMed  Google Scholar 

  6. Kunakh, V.A., Papaver somniferum L. and Papaver bracteatum Lindl., in: Biotech. Med. Plants. Genetic, physiological and biochemical basis, Kiev: Logos, 2005, p. 516.

    Google Scholar 

  7. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, p. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  8. Betekhtin, A., Rojek, M., Jaskowiak, J., Milewska-Hendel, A., Kwasniewska, J., Kostyukova, Y., Kurczynska, E., Rumyantseva, N., and Hasterok, R., Nuclear genome stability in long-term cultivated callus lines of Fagopyrum tataricum (L.) Gaertn, PLoS ONE, 2017, vol. 12, p. e0173537 https://doi.org/10.1371/journal.pone.0173537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akulov, A.N. and Kostyukova, Yu.A., Cultivation conditions, histological and biochemical analysis of callus culture of licorice Glycyrrhiza glabra L., Cytology, 2021, vol. 63, p. 590. https://doi.org/10.31857/S004137712106002X

    Article  Google Scholar 

  10. Folin, O. and Ciocalteu, V., On tyrosine and tryptophane determinations in proteins, J. Biol. Chem., 1927, vol. 73, p. 627. https://doi.org/10.1016/S0021-9258(18)84277-6

    Article  CAS  Google Scholar 

  11. Wagner, H. and Bladt, S., Plant drug analysis: a thin layer chromatography atlas. 2nd ed. Berlin, New York: Springer, 1996.

    Book  Google Scholar 

  12. Šamaj, J., Bobák, M., Blehová, A., Krištin, J., and Auxtová-Šamajová, O., Developmental SEM observations on an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays, Protoplasma, 1995, vol. 186, p. 45. https://doi.org/10.1007/BF01276934

    Article  Google Scholar 

  13. Facchini, P.J. and Bird, D.A., Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures, In Vitro Cell. Develop. Biol. Plant., 1998, vol. 34, p. 69. https://doi.org/10.1007/BF02823126

    Article  CAS  Google Scholar 

  14. Della Rocca, G., Papini, A., Posarelli, I., Barberini, S., Tani, C., Danti, R., and Moricca, S., Ultrastructure of terpene and polyphenol synthesis in the bark of Cupressus sempervirens after Seiridium cardinale infection, Front. Microbiol., 2022, vol. 13, p. 1. https://doi.org/10.3389/fmicb.2022.886331

    Article  Google Scholar 

  15. Alcantara, J., Bird, D.A., Franceschi, V.R., and Facchini, P.J., Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment, Plant Physiol., 2005, vol. 138, p. 173. https://doi.org/10.1104/pp.105.059287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, N., Wang, M., Li, Y., Zhou, M., Wu, T., and Cheng, Z., TLC–MS identification of alkaloids in Leonuri herba and Leonuri fructus aided by a newly developed universal derivatisation reagent optimised by the response surface method, Phytochem. Analys., 2021, vol. 32, p. 242. https://doi.org/10.1002/pca.2970

    Article  CAS  Google Scholar 

  17. Sieber, P., Schorderet, M., Ryser, U., Buchala, A., Kolattukudy, P., Métraux, J.-P., and Nawrath, C., Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions, Plant Cell., 2000, vol. 12, p. 721. https://doi.org/10.1105/tpc.12.5.721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Javelle, M., Vernoud, V., Rogowsky, P.M., and Ingram, G.C., Epidermis: the formation and functions of a fundamental plant tissue, New Phytol., 2011, vol. 189, p. 17. https://doi.org/10.1111/j.1469-8137.2010.03514.x

    Article  CAS  PubMed  Google Scholar 

  19. Batygina, T.B. and Vinogradova, G.Yu., The phenomenon of polyembryony. Genetic heterogeneity of seeds, Ontogenesis, 2007, vol. 38, No. 7, p. 166.

    CAS  Google Scholar 

  20. Filonova, L.H., Bozhkov, P.V., and Arnold, S. von., Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking, J. Exp. Bot., 2000, vol. 5, p. 249. https://doi.org/10.1093/jexbot/51.343.249

    Article  Google Scholar 

  21. Rumyantseva, N.I., Arabinogalactan proteins: participation in plant growth and morphogenesis, Biochemistry, 2005, vol. 70, No. 10, p. 1301.

    Google Scholar 

  22. Rumyantseva, N.I., Šamaj, Y., Enzikat, H.-Y., Salnikov, V.V., Baluška F. and Volkmann, D., Changes in the extracellular matrix surface network during cyclic reproduction of proembryonic cell complexes in the Fagopyrum tataricum (L.) Gaertn callus Dokl. Akad. Nauk, 2003, vol. 391, no. 1, p. 123.

    Google Scholar 

  23. Konieczny, R., Bohdanowicz, J., Czaplicki, A., and Przywara, L., Extracellular matrix surface network during plant regeneration in wheat anther culture, Plant Cell Tiss. Organ Cult., 2005, vol. 83. p. 201. https://doi.org/10.1007/s11240-005-5771-9

    Article  Google Scholar 

  24. Hazarika, B., Morpho-physiological disorders in in vitro culture of plants, Scientia Horticulturae, 2006, vol. 108, p. 105. https://doi.org/10.1016/j.scienta.2006.01.038

    Article  CAS  Google Scholar 

  25. Kerstiens, G., Effects of low light intensity and high air humidity on morphology and permeability of plant cuticles, with special respect to plants cultured in vitro, In: Physiol. Growth Develop. Plants Cult., Lumsden, P.J., Nicholas, J.R., and Davies, W.J., Eds., Dordrecht: Springer Netherlands, 1994, p. 132.

    Google Scholar 

  26. Johansson, M., Kronestedt-Robards, E., and Robards, A., Rose leaf structure in relation to different stages of micropropagation, Protoplasma, 1992, vol. 166, p. 165. https://doi.org/10.1007/BF01322779

    Article  Google Scholar 

  27. Wetzstein, H. and Sommer, H., Leaf anatomy of tissue-cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization, Amer. J. Bot., 1982, vol. 69, p. 1579. https://doi.org/10.1002/j.1537-2197.1982.tb13411.x

    Article  Google Scholar 

  28. Matas, A., Lopez-Casado, G., Cuartero, J., and Heredia, A., Relative humidity and temperature modify the mechanical properties of isolated tomato fruit cuticles, Amer. J. Bot., 2005, vol. 92, p. 462. https://doi.org/10.3732/ajb.92.3.462

    Article  Google Scholar 

  29. Schreiber, L., Skrabs, M., Hartmann, K., Diamantopoulos, P., Simanova, E., and Santrucek, J., Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks, Planta, 2001, vol. 214, p. 274. https://doi.org/10.1007/s004250100615

    Article  CAS  PubMed  Google Scholar 

  30. Yeung, E., The orchid embryo—“an embryonic protocorm”, Botany, 2022, vol. 100, p. 691. https://doi.org/10.1139/cjb-2022-0017

    Article  CAS  Google Scholar 

  31. Schuchmann, R. and Wellmann, E., Somatic embryogenesis of tissue cultures of Papaver somniferum and Papaver orientale and its relationship to alkaloid and lipid metabolism, Plant Cell Reports, 1983, vol. 2, p. 88. https://doi.org/10.1007/BF00270173

    Article  CAS  PubMed  Google Scholar 

  32. Lančaričová, A., Havrlentová, M., Muchová, D., and Bednárová, A., Oil content and fatty acids composition of poppy seeds cultivated in two localities of Slovakia, Agriculture (Polnohospodárstvo), 2016, vol. 62, p. 19. https://doi.org/10.1515/agri-2016-0003

    Article  Google Scholar 

  33. Christodoulakis, N., Tsiarta, M., and Fasseas, C., Leaf structure and histochemical investigation in Papaver rhoeas L. (Corn Poppy, Field Poppy), J. Herbs, Spices Med. Plants, 2013, vol. 19, p. 119. https://doi.org/10.1080/10496475.2012.755942

    Article  CAS  Google Scholar 

  34. Singh, H., Batish, D., Kaur, S., Arora, K., and Kohli, K., α-Pinene inhibits growth and induces oxidative stress in roots, Ann. Bot., 2006, vol. 98, p. 1261. https://doi.org/10.1093/aob/mcl213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Slavíková, L. and Slavík, J., Alkaloids from Papaver rupifragum Boiss. & Reut., Collect. Czech. Chem. Commun., 1980, vol. 45, p. 761. https://doi.org/10.1135/cccc19800761

    Article  Google Scholar 

  36. Galewsky, S. and Nessler, C., Synthesis of morphinane alkaloids during opium poppy somatic embryogenesis, Plant Sci., 1986, vol. 45, p. 215. https://doi.org/10.1016/0168-9452(86)90142-1

    Article  CAS  Google Scholar 

  37. Kamo, K. and Mahlberg, P., Morphinan alkaloids: biosynthesis in plant (Papaver spp.) tissue cultures, Medic. Aromat. Plants I, Bajaj, Y.P.S., Ed., Berlin: Springer Heidelberg, 1988, vol. 4, p. 251.

    Google Scholar 

  38. Kunakh, V.A. and Katsan, V.A., Biosynthesis of poppy isoquinoline alkaloids in nature and culture in vitro 1. Poppy soporific Papaver bracteatum L., Ukr. biochem. zh., 2003, vol. 75, No. 5, p. 41.

  39. Hagel, J., Yeung, E., and Facchini, P., Got milk? The secret life of laticifers: 12, Trends Plant Sci., 2008, vol. 13, p. 631. https://doi.org/10.1016/j.tplants.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  40. Krasteva, G., Georgiev, V., and Pavlov, A., Recent applications of plant cell culture technology in cosmetics and foods, Engin. Life Sci., 2021, vol. 21, p. 68. https://doi.org/10.1002/elsc.202000078

    Article  CAS  Google Scholar 

Download references

Funding

The research was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of government assignments carried out by Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences (state registration number 122011800137-0).

The work was partially performed using equipment at the Collective spectro-analytical center for the study of the structure, composition, and properties of substances and materials of the Federal research center of the Kazan scientific center of the Russian academy of sciences (Hitachi 7800 electron microscope).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Rumyantseva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: CFE—complex of fused embryoids; ECMSN—extracellular matrix surface network; MS medium—Murashige and Skoog medium; TBO—toluidine blue; TEM—transmission electron microscopy; PCs—phenolic compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantseva, N.I., Kostyukova, Y.A., Valieva, A.I. et al. Establishing a Long-Term Cultivated Embryogenic Culture of Papaver rupifragum Boiss. & Reut. and Its Cytological and Biochemical Study. Russ J Plant Physiol 70, 167 (2023). https://doi.org/10.1134/S102144372370022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S102144372370022X

Keywords:

Navigation