Skip to main content
Log in

Change in the Activity of Genes of Transcription Factors TaNAC69, TaDREB1, and TabZIP60 in Bread Wheat Plants with Water Deficiency and Hypothermia

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Bread wheat (Triticum aestivum L.) is the most important food crop in the world. Stress factors, primarily drought and hypothermia, have a negative impact on wheat productivity. Transcription factors (TFs) are a promising target for increasing plant resistance to stress due to their ability to control the expression of a large number of defense genes. The most significant regulators of stress resistance reactions are the following TF families: NAC, DREB, and bZIP. We analyzed changes in the relative content of gene transcripts TaNAC69, TaDREB1, and TabZIP60 in seven varieties and two promising breeding lines of bread wheat under drought and hypothermia. Changes in the expression levels of these genes correlated with such parameters of stress resistance as the relative content of water, proline, and malondialdehyde. For the gene TaNAC69, an increase in the relative content of transcripts during drought in all studied cultivars was characteristic; hypothermia caused much smaller changes in the expression profile of this gene. Under the action of hypothermia and drought, the highest level of gene transcripts of TaDREB1 was identified in the L43466 line; in the gene TabZIP60 during drought, the maximum values of transcriptional activity were also shown by line L43466. Line L43466 showed the highest relative level of transcripts under the action of stress factors among all studied genes, which may indicate its greatest potential for further selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fathi, A. and Tari, D.B., Effect of drought stress and its mechanisms in plants, Int. J. Life Sci., 2016, vol. 10, p. 1. https://doi.org/10.3126/ijls.v10i1.14509

    Article  Google Scholar 

  2. Naraikina, N.V., Popov, V.N., Mironov, K.S., Pchelkin, V.P., Trunova, T.I., and Moshkov, I.E., Gene transcription of chloroplast fatty acid desaturases during low-temperature hardening of Solanum tuberosum L., Vestn. Tomsk. Gos. Univ., Biol., 2019, no. 47, p. 174. https://doi.org/10.17223/19988591/47/9

  3. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., and Wang, L., Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities, Front. Plant Sci., 2018, vol. 9, p. 393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zaikina, E.A., Rumyantsev, S.D., Sarvarova, E.R., and Kuluev, B.R., Transcription factor genes involved in plant response to abiotic stress factors, Ecol. Genet., 2019, vol. 17, p. 47. https://doi.org/10.17816/ecogen17347-58

    Article  Google Scholar 

  5. Baillo, E.H., Kimotho, R.N., Zhang, Z., and Xu, P., Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement, Genes (Basel), 2019, vol. 10, p. 771. https://doi.org/10.3390/genes10100771

    Article  CAS  PubMed Central  Google Scholar 

  6. Khan, S., Anwar, S., Yu, S., Sun, M., Yang, Z., and Gao, Z.Q., Development of drought-tolerant transgenic wheat: achievements and limitations, Int. J. Mol. Sci., 2019, vol. 20, p. 3350. https://doi.org/10.3390/ijms20133350

    Article  CAS  PubMed Central  Google Scholar 

  7. Gahlaut, V., Jaiswal, V., Kumar, A., and Gupta, P.K., Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.), Theor. Appl. Genet., 2016, vol. 129, p. 2019. https://doi.org/10.1007/s00122-016-2794-z

    Article  CAS  PubMed  Google Scholar 

  8. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  9. Khedr, A.H.A., Abbas, M.A., Abdel, W.A.A., Quick, W.P., and Abogadallah, G.M., Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt stress, J. Exp. Bot., 2003, vol. 54, p. 2553. https://doi.org/10.1093/jxb/erg277

    Article  CAS  PubMed  Google Scholar 

  10. Taylor, N.L. and Millar, A.H., Oxidative stress and plant mitochondria, Methods Mol. Biol., 2007, vol. 372, p. 389. https://doi.org/10.1007/978-1-59745-365-3_28

  11. Veselova, S.V., Burkhanova, G.F., Nuzhnaya, T.V., and Maksimov, I.V., Roles of ethylene and cytokinins in development of defense responses in Triticum aestivum plants infected with Septoria nodorum, Russ. J. Plant Physiol., 2016, vol. 63, p. 609. https://doi.org/10.1134/S1021443716050150

    Article  CAS  Google Scholar 

  12. Aref, I.M., Khan, P.R., Khan, S., El-Atta, H., Ahmed, A.I., and Iqbal, M., Modulation of antioxidant enzymes in Juniperus procera needles in relation to habitat environment and dieback incidence, Trees, 2016, vol. 30, p. 1669. https://doi.org/10.1007/s00468-016-1399-0

    Article  Google Scholar 

  13. Xue, G.P., Way, H.M., Richardson, T., Drenth, J., Joyce, P.A., and McIntyre, C.L., Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat, Mol. Plant., 2011, vol. 4, p. 697. https://doi.org/10.1093/mp/ssr013

    Article  CAS  PubMed  Google Scholar 

  14. Liu, M., Wang, Z., Xiao, H.M., and Yang, Y., Characterization of TaDREB1 in wheat genotypes with different seed germination under osmotic stress, Hereditas, 2018, vol. 155, p. 26. https://doi.org/10.1186/s41065-018-0064-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L., Zhang, L., Xia, C., Zhao, G., Liu, J., and Jia, J., A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis, Physiol. Plant., 2015, vol. 153, p. 538. https://doi.org/10.1111/ppl.12261

    Article  CAS  PubMed  Google Scholar 

  16. Niu, C., Wei, W., Zhou, Q., Tian, A.G., Hao, Y.J., Zhang, W.K., Ma, B., Lin, Q., Zhang, Z.B., Zhang, J.S., and Chen, S.Y., Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants, Plant Cell Environ., 2012, vol. 35, p. 1156. https://doi.org/10.1111/j.1365-3040.2012.02480.x

    Article  CAS  PubMed  Google Scholar 

  17. Joshi, R. and Karan, R., Physiological, biochemical and molecular mechanisms of drought tolerance in plants, in Molecular Approaches in Plant Abiotic Stress, Gaur, R.K. and Sharma, P., Eds., Boca Raton, FL: CRC Press, 2013. P. 209.

    Google Scholar 

  18. Sawahel, W.W. and Hassan, A.H., Generation of transgenic wheat plants producing high levels of the osmoprotectant proline, Biotechnol. Lett., 2002, vol. 24, p. 721. https://doi.org/10.1023/A:1015294319114

    Article  CAS  Google Scholar 

  19. Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., and Jaoua, S., Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants, Plant Sci., 2005, vol. 169, p. 746. https://doi.org/10.1016/j.plantsci.2005.05.025

    Article  CAS  Google Scholar 

  20. Kishor, P.B.K., Hong, Z., Miao, G.G., Hu, C.A.A., and Verma, D.P.S., Overexpression of ∆1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants, Plant Physiol., 1995, vol. 108, p. 1387. https://doi.org/10.1104/pp.108.4.1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaweł, S., Wardas, M., Niedworok, E., and Wardas, P., Dialdehyd malonowy (MDA) jako wskaźnik procesów peroksydacji lipidów w organizmie, Wiad Lek, 2004, vol. 57, p. 453.

    PubMed  Google Scholar 

  22. Marček, T., Hamow, K.Á., Végh, B., Janda, T., and Darko, E., Metabolic response to drought in six winter wheat genotypes, PloS One, 2019, vol. 14, p. 2. https://doi.org/10.1371/journal.pone.0212411

    Article  CAS  Google Scholar 

  23. Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., and Oda, K., Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis, Planta, 2009, vol. 229, p. 1065. https://doi.org/10.1007/s00425-009-0895-5

    Article  CAS  PubMed  Google Scholar 

  24. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K., Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray, Plant Cell, 2001, vol. 13, p. 61. https://doi.org/10.1105/tpc.13.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression, Plant J., 2003, vol. 33, p. 751. https://doi.org/10.1046/j.1365-313x.2003.01661.x

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal, P., Baranwal, V.K., and Khurana, P., Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress, Sci. Rep., 2019, vol. 9, p. 4608. https://doi.org/10.1038/s41598-019-40659-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was performed within state assignment AAAA-A19-119021190011-0 with the support of grants from the president of the Russian Federation (no. MD-2304.2020.4) and the Ministry of Education and Science of the Russian Federation (agreement no. 075-15-2021-549 of May 31, 2021, and no. 075-15-2021-1066 of September 28, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Zaikina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaikina, E.A., Musin, K.G., Kuluev, A.R. et al. Change in the Activity of Genes of Transcription Factors TaNAC69, TaDREB1, and TabZIP60 in Bread Wheat Plants with Water Deficiency and Hypothermia. Russ J Plant Physiol 69, 56 (2022). https://doi.org/10.1134/S1021443722030189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030189

Keywords:

Navigation