Skip to main content
Log in

Photoperiod-Dependent Mechanisms of Flowering Initiation in Arabidopsis thaliana L. and Zea mays L.

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The domestication of plants involves their adaptation to different climatic conditions, including changes in photoperiod and temperature. Many genetic loci of domestication are orthologous in distant taxa. The main molecular genetic mechanisms of flowering have been described in detail in the model plant Arabidopsis thaliana L., which forms the basis for studying and building models of flowering of other plant species. The domestication and breeding of maize Zea mays L. has resulted in a wide variety of responses to day length in this species, while maintaining the basis of the genetic network that controls sensitivity to photoperiod. The review considers the features of the response to the photoperiod of maize plants in comparison with the model species Arabidopsis, including phenological genes for maize breeding, which were the target of selection in the process of Zea mays adaptation to new ecological and geographical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hill, C.B. and Li, C., Genetic architecture of flowering phenology in cereals and opportunities for crop improvement, Front. Plant Sci., 2016, vol. 7, p. 1906. https://doi.org/10.3389/fpls.2016.01906

    Article  PubMed  PubMed Central  Google Scholar 

  2. Craufurd, P.Q. and Wheeler, T.R., Climate change and the flowering time of annual crops, J. Exp. Bot., 2009, vol. 60, p. 2529.

    Article  CAS  PubMed  Google Scholar 

  3. Greenup, A., Peacock, W.J., Dennis, E.S., and Trevaskis, B., The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals, Ann. Bot., 2009, vol. 103, p. 1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. von Zitzewitz, J., Szucs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H., Hayes, P.M., and Skinner, J.S., Molecular and structural characterization of barley vernalization genes, Plant Mol. Biol., 2005, vol. 59, p. 449.

    Article  PubMed  Google Scholar 

  5. Gawroński, P., Ariyadasa, R., Himmelbach, A., Poursarebani, N., Kilian, B., Stein, N., Steuernagel, B., Hensel, G., Kumlehn, J., Sehgal, S.K., Gill, B.S., Gould, P., Hall, A., and Schnurbusch, T., A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat, Genetics, 2014, vol. 196, p. 1253.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao, S., Luo, X., Xu, D., Tian, X., Song, J., Xia, X., Chu, C., and He, Z., Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals, New Phytol., 2021, vol. 230, p. 1731.

    Article  CAS  PubMed  Google Scholar 

  7. Song, Y.H., Kubota, A., Kwon, M.S., Covington, M.F., Lee, N., Taagen, E.R., Laboy Cintrón, D., Hwang, D.Y., Akiyama, R., Hodge, S.K., Huang, H., Nguyen, N.H., Nusinow, D.A., Millar, AJ, Shimizu, K.K., et al., Molecular basis of flowering under natural long-day conditions in Arabidopsis, Nat. Plants, 2018, vol. 4, p. 824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez, G.J., Buckler, E., and Doebley, J., A single domestication for maize shown by multilocus microsatellite genotyping, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, p. 6080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernier, G., Havelange, A., Houssa, C., Petitjean, A., and Lejeune, P., Physiological signals that induce flowering, Plant Cell, 1993, vol. 5, p. 1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pidkowich, M.S., Klenz, J.E., and Haughn, G.W., The making of a flower: control of floral meristem identity in Arabidopsis, Trends Plant Sci., 1999, vol. 4, p. 64.

    Article  CAS  PubMed  Google Scholar 

  11. Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G., The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors, Cell, 1995, vol. 80, p. 847.

    Article  CAS  PubMed  Google Scholar 

  12. Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T., FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis, Science, 2007, vol. 318, p. 261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fornara, F., Panigrahi, K.C., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J.A., and Coupland, G., Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response, Dev. Cell, 2009, vol. 17, p. 75.

    Article  CAS  PubMed  Google Scholar 

  14. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G., Photoreceptor regulation of CONSTANS protein in photoperiodic flowering, Science, 2004, vol. 303, p. 1003.

    Article  CAS  PubMed  Google Scholar 

  15. Jang, S., Marchal, V., Panigrahi, K.C., Wenkel, S., Soppe, W., Deng, X.W., Valverde, F., and Coupland, G., Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response, EMBO J., 2008, vol. 27, p. 1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lazaro, A., Mouriz, A., Piñeiro, M., and Jarillo, J.A., Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis, Plant Cell, 2015, vol. 27, p. 2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G., FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, Science, 2007, vol. 316, p. 1030.

    Article  CAS  PubMed  Google Scholar 

  18. Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., and Shimamoto, K., 14-3-3 Proteins act as intracellular receptors for rice Hd3a florigen, Nature, 2011, vol. 476, p. 332.

    Article  CAS  PubMed  Google Scholar 

  19. Brambilla, V. and Fornara, F., Y flowering? Regulation and activity of CONSTANS and CCT-domain proteins in Arabidopsis and crop species, Biochim. Biophys. Acta, Gene Regul. Mech., 2017, vol. 1860, p. 655.

    Article  CAS  Google Scholar 

  20. Jaeger, K.E. and Wigge, P.A., FT protein acts as a long-range signal in Arabidopsis, Curr. Biol., 2007, vol. 17, p. 1050.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, J.W., Czech, B., and Weigel, D., miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana, Cell, 2009, vol. 138, p. 738.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S., The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis, Cell, 2009, vol. 138, p. 750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathieu, J., Yant, L.J., Mürdter, F., Küttner, F., and Schmid, M., Repression of flowering by the miR172 target SMZ, PLoS Biol., 2009, vol. 7, p. e1000148. https://doi.org/10.1371/journal.pbio.1000148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi, A., Wu, M.F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D., The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1, Dev. Cell, 2009, vol. 17, p. 268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yant, L., Mathieu, J., Dinh, T.T., Ott, F., Lanz, C., Wollmann, H., Chen, X., and Schmid, M., Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2, Plant Cell, 2010, vol. 22, p. 2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung, J.H., Seo, P.J., Kang, S.K., and Park, C.M., miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions, Plant Mol. Biol., 2011, vol. 76, p. 35.

    Article  CAS  PubMed  Google Scholar 

  27. Jung, J.H., Lee, H.J., Ryu, J.Y., and Park, C.M., SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering, Mol. Plant, 2016, vol. 9, p. 1647.

    Article  CAS  PubMed  Google Scholar 

  28. Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M., The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis, Plant Cell, 2007, vol. 19, p. 2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P., The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis, Plant Mol. Biol., 2008, vol. 67, p. 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, J.W., Regulation of flowering time by the miR156-mediated age pathway, J. Exp. Bot., 2014, vol. 65, p. 4723.

    Article  CAS  PubMed  Google Scholar 

  31. Gandikota, M., Birkenbihl, R.P., Höhmann, S., Cardon, G.H., Saedler, H., and Huijser, P., The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings, Plant J., 2007, vol. 49, p. 683.

    Article  CAS  PubMed  Google Scholar 

  32. Guo, A.Y., Zhu, Q.H., Gu, X., Ge, S., Yang, J., and Luo, J., Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family, Gene, 2008, vol. 418, p. 1.

    Article  CAS  PubMed  Google Scholar 

  33. Xie, K., Wu, C., and Xiong, L., Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice, Plant Physiol., 2006, vol. 142, p. 280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, Z., Wang, X., Gu, S., Hu, Z., Xu, H., and Xu, C., Comparative study of SBP-box gene family in Arabidopsis and rice, Gene, 2008, vol. 407, p. 1.

    Article  CAS  PubMed  Google Scholar 

  35. Yang, L., Conway, S.R., and Poethig, R.S., Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156, Development, 2011, vol. 138, p. 245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poethig, R.S., Vegetative phase change and shoot maturation in plants, Curr. Top. Dev. Biol., 2013, vol. 105, p. 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong, Y. and Zheng, Y., Phototropin is partly involved in blue-light-mediated stem elongation, flower initiation, and leaf expansion: a comparison of phenotypic responses between wild Arabidopsis and its phototropin mutants, Environ. Exp. Bot., 2020, vol. 171, p. e103967. https://doi.org/10.1016/j.envexpbot.2019.103967

    Article  CAS  Google Scholar 

  38. Liu, H., Liu, B., Zhao, C., Pepper, M., and Lin, C., The action mechanisms of plant cryptochromes, Trends Plant Sci., 2011, vol. 16, p. 684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arongaus, A.B., Chen, S., Pireyre, M., Glockner, N., Galvao, V.C., Albert, A., Winkler, J.B., Fankhauser, C., Harter, K., and Ulm, R., Arabidopsis RUP2 represses UVR8-mediated flowering in noninductive photoperiods, Genes Dev., 2018, vol. 32, p. 1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monte, E., Alonso, J.M., Ecker, J.R., Zhang, Y., Li, X., Young, J., Austin-Phillips, S., and Quail, P.H., Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways, Plant Cell, 2003, vol. 15, p. 1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Devlin, P.F., Robson, P.R., Patel, S.R., Goosey, L., Sharrock, R.A., and Whitelam, G.C., Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time, Plant Physiol., 1999, vol. 119, p. 909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Devlin, P.F., Patel, S.R., and Whitelam, G.C., Phytochrome E influences internode elongation and flowering time in Arabidopsis, Plant Cell, 1998, vol. 10, p. 1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, W.Y., Fujiwara, S., Suh, S.S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., and Somers, D.E., ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light, Nature, 2007, vol. 449, p. 356.

    Article  CAS  PubMed  Google Scholar 

  44. Schultz, T.F., Kiyosue, T., Yanovsky, M., Wada, M., and Kay, S.A., A role for LKP2 in the circadian clock of Arabidopsis, Plant Cell, 2001, vol. 13, p. 2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., and Bartel, B., FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis, Cell, 2000, vol. 101, p. 331.

    Article  CAS  PubMed  Google Scholar 

  46. Somers, D.E., Kim, W.Y., and Geng, R., The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time, Plant Cell, 2004, vol. 16, p. 769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takase, T., Nishiyama, Y., Tanihigashi, H., Ogura, Y., Miyazaki, Y., Yamada, Y., and Kiyosue, T., LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1, Plant J., 2011, vol. 67, p. 608.

    Article  CAS  PubMed  Google Scholar 

  48. Gil, K.E. and Park, C.M., Thermal adaptation and plasticity of the plant circadian clock, New Phytol., 2019, vol. 221, p. 1215.

    Article  PubMed  Google Scholar 

  49. Goff, S.A., Collaboration on the rice genome, Science, 2002, vol. 296: 45. https://doi.org/10.1126/science.296.5565.45c

    Article  CAS  PubMed  Google Scholar 

  50. Mayer, K.F., Waugh, R., Brown, J.W., Schulman, A., Langridge, P., Platzer, M., Fincher, G.B., Muehlbauer, G.J., Sato, K., Close, T.J., Wise, R.P., Stein, N., et al., A physical, genetic and functional sequence assembly of the barley genome, Nature, 2012, vol. 91, p. 711.

    Google Scholar 

  51. International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science, 2014, vol. 345, art. ID 1251788. https://doi.org/10.1126/science.1251788

    Article  CAS  Google Scholar 

  52. Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F.S., Pasternak, S., Liang, C.Z., Zhang, J.W., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S.S., Tomlinson, C., et al., The B73 maize genome: complexity, diversity, and dynamics, Science, 2009, vol. 326, p. 1112.

    Article  CAS  PubMed  Google Scholar 

  53. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K., Adaptation of photoperiodic control pathways produces short-day flowering in rice, Nature, 2003, vol. 422, p. 719.

    Article  CAS  PubMed  Google Scholar 

  54. Calixto, C.P., Waugh, R., and Brown, J.W., Evolutionary relationships among barley and Arabidopsis core circadian clock and clock-associated genes, J. Mol. Evol., 2015, vol. 80, p. 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chardon, F., Virlon, B., Moreau, L., Falque, M., Joets, J., Decousset, L., Murigneux, A., and Charcosset, A., Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome, Genetics, 2004, vol. 168, p. 2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mascheretti, I., Turner, K., Brivio, R.S., Hand, A., Colasanti, J., and Rossi, V., Florigen-encoding genes of day-neutral and photoperiod-sensitive maize are regulated by different chromatin modifications at the floral transition, Plant Physiol., 2015, vol. 168, p. 1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C., Ersoz, E., Flint-Garcia, S., Garcia, A., Glaubitz, J.C., Goodman, M.M., Harjes, C., Guill, K., Kroon, D.E., Larsson, S., et al., The genetic architecture of maize flowering time, Science, 2009, vol. 325, p. 714.

    Article  CAS  PubMed  Google Scholar 

  58. Steinhoff, J., Liu, W., Reif, J.C., Della Porta, G., Ranc, N., and Würschum, T., Detection of QTL for flowering time in multiple families of elite maize, Theor. Appl. Genet., 2012, vol. 125, p. 1539.

    Article  PubMed  Google Scholar 

  59. Colasanti, J., Tremblay, R., Wong, A.Y., Coneva, V., Kozaki, A., and Mable, B.K., The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants, BMC Genomics, 2006, vol. 7, p. 158. https://doi.org/10.1186/1471-2164-7-158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wong, A.Y. and Colasanti, J., Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition, J. Exp. Bot., 2007, vol. 58, p. 403.

    Article  CAS  PubMed  Google Scholar 

  61. Miller, T.A., Muslin, E.H., and Dorweiler, J.E., A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods, Planta, 2008, vol. 227, p. 1377.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, L., Wu, Y., Liao, Z., Xiong, J., Wu, F., Xu, J., Lan, H., Tang, Q., Zhou, S., Liu, Y., and Lu, Y., Evolutionary conservation and functional divergence of the LFK gene family play important roles in the photoperiodic flowering pathway of land plants, Heredity, 2018, vol. 120, p. 310.

    Article  PubMed  Google Scholar 

  63. Bendix, C., Mendoza, J.M., Stanley, D.N., Meeley, R., and Harmon, F.G., The circadian clock-associated gene gigantea1 affects maize developmental transitions, Plant Cell Environ., 2013, vol. 36, p. 1379.

    Article  CAS  PubMed  Google Scholar 

  64. Meng, X., Muszynski, M.G., and Danilevskaya, O.N., The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize, Plant Cell, 2011, vol. 23, p. 942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lazakis, C.M., Coneva, V., and Colasanti, J., ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize, J. Exp. Bot., 2011, vol. 62, p. 4833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Su, H., Cao, Y., Ku, L., Yao, W., Cao, Y., Ren, Z., Dou, D., Wang, H., Ren, Z., Liu, H., Tian, L., Zheng, Y., Chen, C., and Chen, Y., Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize, J. Exp. Bot., 2018, vol. 69, p. 5177.

    Article  CAS  PubMed  Google Scholar 

  67. Li, Y.X., Li, C., Bradbury, P.J., Liu, X., Lu, F., Romay, C.M., Glaubitz, J.C., Wu, X., Peng, B., Shi, Y., Song, Y., Zhang, D., Buckler, E.S., Zhang, Z., Li, Y., and Wang, T., Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population, Plant J., 2016, vol. 86, p. 391.

    Article  CAS  PubMed  Google Scholar 

  68. Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguineti, M.C., Castelletti, S., and Tuberosa, R., Genetic dissection of maize phenology using an intraspecific introgression library, BMC Plant Biol., 2011, vol. 11, p. 4. https://doi.org/10.1186/1471-2229-11-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liang, Y., Liu, Q., Wang, X., Huang, C., Xu, G., Hey, S., Lin, H.Y., Li, C., Xu, D., Wu, L., Wang, C., Wu, W., Xia, J., Han, X., Lu, S., et al., ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation, New Phytol., 2019, vol. 221, p. 2335.

    Article  CAS  PubMed  Google Scholar 

  70. Ducrocq, S., Giauffret, C., Madur, D., Combes, V., Dumas, F., Jouanne, S., Coubriche, D., Jamin, P., Moreau, L., and Charcosset, A., Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10, Genetics, 2009, vol. 183, p. 1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muszynski, M.G., Dam, T., Li, B., Shirbroun, D.M., Hou, Z., Bruggemann, E., Archibald, R., Ananiev, E.V., and Danilevskaya, O.N., delayed flowering1 Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize, Plant Physiol., 2006, vol. 142, p. 1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Minow, M.A.A., Ávila, L.M., Turner, K., Ponzoni, E., Mascheretti, I., Dussault, F.M., Lukens, L., Rossi, V., and Colasanti, J., Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte, J. Exp. Bot., 2018, vol. 69, p. 2937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alter, P., Bircheneder, S., Zhou, L.Z., Schlüter, U., Gahrtz, M., Sonnewald, U., and Dresselhaus, T., Flowering time-regulated genes in maize include the transcription factor ZmMADS1, Plant Physiol., 2016, vol. 172, p. 389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., Yang, C.J., York, A.M., Xue, W., Xu, G., Liang, Y., Chen, Q., Doebley, J.F., and Tian, F., Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation, Curr. Biol., 2018, vol. 28, p. 3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stephenson, E., Estrada, S., Meng, X., Ourada, J., Muszynski, M.G., Habben, J.E., and Danilevskaya, O.N., Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize, PLoS One, 2019, vol. 14, p. e0203728. https://doi.org/10.1371/journal.pone.0203728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhong, S., Liu, H., Li, Y., and Lin, Z., Opposite response of maize ZmCCT to photoperiod due to transposon jumping, Theor. Appl. Genet., 2021, vol. 134, p. 2841. https://doi.org/10.1007/s00122-021-03862-7

    Article  CAS  PubMed  Google Scholar 

  77. Huang, C., Sun, H., Xu, D., Chen, Q., Liang, Y., Wang, X., Xu, G., Tian, J., Wang, C., Li, D., Wu, L., Yang, X., Jin, W., Doebley, J.F., and Tian, F., ZmCCT9 enhances maize adaptation to higher latitudes, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, p. E334.

    Article  CAS  PubMed  Google Scholar 

  78. Hung, H.Y., Shannon, L.M., Tian, F., Bradbury, P.J., Chen, C., Flint-Garcia, S.A., McMullen, M.D., Ware, D., Buckler, E.S., Doebley, J.F., and Holland, J.B., ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, p. E1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, Q., Li, Z., Li, W., Ku, L., Wang, C., Ye, J., Li, K., Yang, N., Li, Y., Zhong, T., Li, J., Chen, Y., Yan, J., Yang, X., and Xu, M., CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize., Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, p. 16969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sheehan, M.J., Farmer, P.R., and Brutnell, T.P., Structure and expression of maize phytochrome family homeologs, Genetics, 2004, vol. 167, p. 1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wei, H., Zhao, Y., Xie, Y., and Wang, H., Exploiting SPL genes to improve maize plant architecture tailored for high-density planting, J. Exp. Bot., 2018, vol. 69, p. 4675.

    CAS  PubMed  Google Scholar 

  82. Li, Q., Wu, G., Zhao, Y., Wang, B., Zhao, B., Kong, D., Wei, H., Chen, C., and Wang, H., CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height, Plant Biotechnol. J., 2020, vol. 18, p. 2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chuck, G., Cigan, A.M., Saeteurn, K., and Hake, S., The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA, Nat. Genet., 2007, vol. 39, p. 544.

    Article  CAS  PubMed  Google Scholar 

  84. Chuck, G., Whipple, C., Jackson, D., and Hake, S., The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries, Development, 2010, vol. 137, p. 1243.

    Article  CAS  PubMed  Google Scholar 

  85. Chuck, G.S., Brown, P.J., Meeley, R., and Hake, S., Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, p. 18775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Unterseer, S., Pophaly, S.D., Peis, R., Westermeier, P., Mayer, M., Seidel, M.A., Haberer, G., Mayer, K.F., Ordas, B., Pausch, H., Tellier, A., Bauer, E., and Schön, C.C., A comprehensive study of the genomic differentiation between temperate Dent and Flint maize, Genome Biol., 2016, vol. 17, p. 137. https://doi.org/10.1186/s13059-016-1009-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bomblies, K. and Doebley, J.F., Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication, Genetics, 2006, vol. 172 P. 519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Danilevskaya, O.N., Meng, X., Selinger, D.A., Deschamps, S., Hermon, P., Vansant, G., Gupta, R., Ananiev, E.V., and Muszynski, M.G., Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize, Plant Physiol., 2008, vol. 147, p. 2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zeng, W., Shi, J., Qiu, C., Wang, Y., Rehman, S., Yu, S., Huang, S., He, C., Wang, W., Chen, H., Chen, C., Wang, C., Tao, Z., and Li, P., Identification of a genomic region controlling thermotolerance at flowering in maize using a combination of whole genomic re-sequencing and bulked segregant analysis, Theor. Appl. Genet., 2020, vol. 133, p. 2797.

    Article  CAS  PubMed  Google Scholar 

  90. Galic, V., Franic, M., Jambrovic, A., Ledencan, T., Brkic, A., Zdunic, Z., and Simic, D., Genetic correlations between photosynthetic and yield performance in maize are different under two heat scenarios during flowering, Front. Plant Sci., 2019, vol. 10, p. 566. https://doi.org/10.3389/fpls.2019.00566

    Article  PubMed  PubMed Central  Google Scholar 

  91. Castelletti, S., Coupel-Ledru, A., Granato, I., Palaffre, C., Cabrera-Bosquet, L., Tonelli, C., Nicolas, S.D., Tardieu, F., Welcker, C., and Conti, L., Maize adaptation across temperate climates was obtained via expression of two florigen genes, PLoS Genet., 2020, vol. 16, art. ID 1008882. https://doi.org/10.1371/journal.pgen.1008882

    Article  CAS  Google Scholar 

  92. Lütz, C., Cell physiology of plants growing in cold environments, Protoplasma, 2010, vol. 244, p. 53.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 21-16-00008) and the Ministry of Science and Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shchennikova.

Ethics declarations

Conflict of interests. The author declar that she has no conflict of interests.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by the author.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchennikova, A.V. Photoperiod-Dependent Mechanisms of Flowering Initiation in Arabidopsis thaliana L. and Zea mays L.. Russ J Plant Physiol 69, 43 (2022). https://doi.org/10.1134/S1021443722020169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722020169

Keywords:

Navigation