Skip to main content
Log in

Delivery of CRISPR/Cas Components into Higher Plant Cells for Genome Editing

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

CRISPR/Cas genome editing of plants is realized in three basic variants, including knockout mutations as indels, insertion of alien DNA fragments, and base editing via deamination of nitrogenous bases. The most important stages of the CRISPR/Cas-based genome editing are the choice of a target site, design of guide RNAs, creation of genetically engineered constructions, and delivery of CRISPR/Cas components into a plant cell. Rapid developments in the field of plant genome editing with the use of CRISPR/Cas systems requires more detailed consideration of the last stage, so this review is dedicated to the description of the main ways to deliver CRISPR/Cas components into cells of higher plants. In the first studies on the genome editing of different plant species, these components were delivered to the target site mainly by Agrobacterium tumefaciens. This approach supposes integration of T-DNA into a genome and a stable expression of CRISPR/Cas components or their transient expression in the case of agroinfiltration. Another widespread approach included the use of plant viruses as delivery platforms; in this case, viruses were used mainly for production of an increased amount of guide RNAs that significantly improved the efficiency of genome editing. Another approach provides for the use of another bacterium, A. rhizogenes, as a platform for delivery of CRISPR/Cas components. This bacterium induces hairy root formation that may be an indirect confirmation of successful genome editing and assist in the selection of genetically modified forms. Other common ways to obtain genetically edited plants are the biolistic delivery of genetically engineered constructions into explants and various protoplast transformation technologies. The review also considers some issues transgenic and GM status of CRISPR/Cas-edited plants to transgenic and GM plants. There are a number of cases in which new organisms created by a CRISPR/Cas genome editing without any introduction of alien DNA were not considered as transgenic ones; it is quite possible that such plants will not fall under Russian legislation prohibiting GMO cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 2012, vol. 337, pp. 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F., Multiplex genome engineering using CRISPR/Cas systems, Science, 2013, vol. 339, pp. 819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Puchta, H., Applying CRISPR/Cas for genome engineering in plants: the best is yet to come, Curr. Opin. Plant Biol., 2017, vol. 36, pp. 1–8. https://doi.org/10.1016/j.pbi.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  4. Chemeris, D.A., Kir’yanova, O.Yu., Gerashchenkov, G.A., Kuluev, B.R., Rozhnova, N.A., Matniyazov, R.T., Baymiev, An.Kh., Baymiev, Al.Kh., Gubaidullin, I.M., and Chemeris, A.V., Bioinformatic resources for CRISPR/Cas genome editing, Biomics, 2017, vol. 9, no. 3, pp. 203–228.

    Google Scholar 

  5. Ma, X., Zhu, Q., Chen, Y., and Liu, Y.G., C-RISPR/Cas9 platforms for genome editing in plants: developments and applications, Mol. Plant, 2016, vol. 9, pp. 961–974. https://doi.org/10.1016/j.molp.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  6. Zlobin, N.E., Ternovoi, V.V., Grebenkina, N.A., and Taranov, V.V., To make the complex easier: modern tools for editing the plant genome, Vavilov J. Genet. Breed., 2017, vol. 21, no. 1, pp. 104–111. https://doi.org/10.18699/VJ17.228

    Article  Google Scholar 

  7. Kuluev, B.R., Gerashchenkov, G.A., Rozhnova, N.A., Baymiev, An.Kh., Vershinina, Z.R., Knyazev, A.V., Matniyazov, R.T., Gumerova, G.R., Mikhailova, E.V., Nikonorov, Yu.M., Chemeris, D.A., Baymiev, Al.Kh., and Chemeris, A.V., CRISPR/Cas genome editing of plants, Biomics, 2017, vol. 9, no. 3, pp. 155–182.

    Google Scholar 

  8. Liu, X., Xie, C., Si, H., and Yang, J., CRISPR/Cas9-mediated genome editing in plants, Methods, 2017, vols. 121–122, pp. 94–102. https://doi.org/10.1016/j.ymeth

  9. Ran, Y., Liang, Z., and Gao, C., Current and future editing reagent delivery systems for plant genome editing, Sci. China Life Sci., 2017, vol. 60, pp. 490–505. https://doi.org/10.1007/s11427-017-9022-1

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D.P., Demonstration of CR-ISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Res., 2013, vol. 41: e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., and Qu, L.J., Targeted mutagenesis in rice using CRISPR-Cas system, Cell Res., 2013, vol. 23, pp. 1233–1236. https://doi.org/10.1038/cr.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., and Zhu, J.K., Efficient genome editing in plants using a CRISPR/Cas system, Cell Res., 2013, vol. 23, pp. 1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., Zeng, L., Liu, X., and Zhu, J.K., Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 4632–4637. https://doi.org/10.1073/pnas.1400822111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fauser, F., Schiml, S., and Puchta, H., Both CRI-SPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana, Plant J., 2014, vol. 79, pp. 348–359. https://doi.org/10.1111/tpj.12554

    Article  CAS  PubMed  Google Scholar 

  15. Schob, H., Kunc, C., and Meins, F., Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing, Mol. Gen. Genetics, 1997, vol. 256, pp. 581–585. https://doi.org/10.1007/s004380050604

    Article  CAS  Google Scholar 

  16. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D., and Kamoun, S., Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease, Nat. Biotechnol., 2013, vol. 31, pp. 691–693. https://doi.org/10.1038/nbt.2655

    Article  CAS  PubMed  Google Scholar 

  17. Jia, H. and Wang, N., Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves, Plant Cell Rep., 2014, vol. 33, pp. 1993–2001. https://doi.org/10.1007/s00299-014-1673-9

    Article  CAS  PubMed  Google Scholar 

  18. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., et al., A robust CR-ISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Mol. Plant, 2015, vol. 8, pp. 1274–1284. https://doi.org/10.1016/j.molp.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  19. Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., Chen, L., and Lu, G., CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations, Sci. Rep., 2016, vol. 6: e24765. https://doi.org/10.1038/srep24765

    Article  CAS  Google Scholar 

  20. Char, S.N., Neelakandan, A.K., Nahampun, H., Frame, B., Main, M., Spalding, M.H., Becraft, P.W., Meyers, B.C., Walbot, V., Wang, K., and Yang, B., An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize, Plant Biotechnol. J., 2017, vol. 15, pp. 257–268. https://doi.org/10.1111/pbi.12611

    Article  CAS  PubMed  Google Scholar 

  21. Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., Toki, S., and Endo, M., CR-ISPR/Cas9-mediated targeted mutagenesis in grape, PLoS One, 2017, vol. 12: e0177966. https://doi.org/10.1371/journal.pone.0177966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Odipio, J., Alicai, T., Ingelbrecht, I., Nusinow, D.A., Bart, R., and Taylor, N.J., Efficient CRISPR/Cas9 genome editing of Phytoene desaturase in cassava, Front. Plant Sci., 2017, vol. 8: e01780. https://doi.org/10.3389/fpls.2017.01780

    Article  Google Scholar 

  23. Wang, M., Mao, Y., Lu, Y., Tao, X., and Zhu, J.K., Multiplex gene editing in rice using the CRISPR-Cpf1 system, Mol. Plant, 2017, vol. 10, pp. 1011–1013. https://doi.org/10.1016/j.molp.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, X., Jacobs, T.B., Xue, L.J., Harding, S.A., and Tsai, C.J., Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy, New Phytol., 2015, vol. 208, pp. 298–301. https://doi.org/10.1111/nph.13470

    Article  CAS  PubMed  Google Scholar 

  25. Mikami, M., Toki, S., and Endo, M., Precision targeted mutagenesis via Cas9 paired nickases in rice, Plant Cell Physiol., 2016, vol. 57, pp. 1058–1068. https://doi.org/10.1093/pcp/pcw049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mercx, S., Tollet, J., Magy, B., Navarre, C., and Boutry, M., Gene inactivation by CRISPR-Cas9 in N-icotiana tabacum BY-2 suspension cells, Front. Plant Sci., 2016, vol. 7: 40. https://doi.org/10.3389/fpls.2016.00040

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hanania, U., Ariel, T., Tekoah, Y., Fux, L., Sheva, M., Gubbay, Y., Weiss, M., Oz, D., Azulay, Y., Turbovski, A., Forster, Y., and Shaaltiel, Y., Establishment of a tobacco BY-2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins, Plant Biotechnol. J., 2017, vol. 15, pp. 1120–1129. https://doi.org/10.1111/pbi.12702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murovec, J., Pirc, Ž. and Yang, B., New variants of CRISPR RNA-guided genome editing enzyme, Plant Biotechnol. J., 2017, vol. 15, pp. 917–926. https://doi.org/10.1111/pbi.12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, S., Zhang, X., Wang, W., Guo, X., Wu, Z., Du, W., Zhao, Y., and Xia, L., Expanding the scope of CR-ISPR/Cpf1-mediated genome editing in rice, Mol. Plant, 2018, vol. 11, pp. 995–998. https://doi.org/10.1016/j.molp.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  30. Wang, M., Lu, Y., Botella, J.R., Mao, Y., Hua, K., and Zhu, J.K., Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system, Mol. Plant, 2017, vol. 10, pp. 1007–1010. https://doi.org/10.1016/j.molp.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  31. Kang, B.C., Yun, J.Y., Kim, S.T., Shin, Y., Ryu, J., Choi, M., Woo, J.W., and Kim, J.S., Precision genome engineering through adenine base editing in plants, Nat. Plants, 2018, vol. 4, pp. 427–431. https://doi.org/10.1038/s41477-018-0178-x

    Article  CAS  PubMed  Google Scholar 

  32. Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., Zong, M., Liu, F., Chen, Q., and Xu, Y., Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing, Plant Cell Rep., 2018, vol. 37, pp. 1353–1356. https://doi.org/10.1007/s00299-018-2299-0

    Article  CAS  PubMed  Google Scholar 

  33. Tsutsui, H. and Higashiyama, T., pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana, Plant Cell Physiol., 2017, vol. 58, pp. 46–56. https://doi.org/10.1093/pcp/pcw191

    Article  CAS  PubMed  Google Scholar 

  34. Baltes, N.J., Gil-Humanes, J., Cermak, T., Atkins, P.A., and Voytas, D.F., DNA replicons for plant genome engineering, Plant Cell, 2014, vol. 26, pp. 151–163. https://doi.org/10.1105/tpc.113.119792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumagai, M.H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L.K., Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 1679–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruiz, M.T., Voinnet, O., and Baulcombe, D.C., Initiation and maintenance of virus-induced gene silencing, Plant Cell, 1998, vol. 10, pp. 937–946. https://doi.org/10.1105/tpc.10.6.937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yin, K., Han, T., Liu, G., Chen, T., Wang, Y., Yu, A.Y., and Liu, Y., A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing, Sci. Rep., 2015, vol. 5: 14926. https://doi.org/10.1038/srep14926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y., and Voytas, D.F., High-frequency, precise modification of the tomato genome, Genome Biol., 2015, vol.16: 232. https://doi.org/10.1186/s13059-015-0796-9

  39. Butler, N.M., Baltes, N.J., Voytas, D.F., and Douches, D.S., Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases, Front. Plant Sci., 2016, vol. 7: e01045. https://doi.org/10.3389/fpls.2016.01045

    Article  Google Scholar 

  40. Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sánchez-León, S., Baltes, N.J., Starker, C., Barro, F., Gao, C., and Voytas, D.F., High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9, Plant J., 2017, vol. 89, pp. 1251–1262. https://doi.org/10.1111/tpj.13446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ali, Z., Abul-Faraj, A., Piatek, M., and Mahfouz, M.M., Activity and specificity of TRV-mediated gene editing in plants, Plant Signal. Behav., 2015, vol. 10: e1044191. https://doi.org/10.1080/15592324.2015.1044191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ali, Z., Abul-Faraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N.J., Voytas, D.F., Dinesh-Kumar, S., and Mahfouz, M.M., Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system, Mol. Plant, 2015, vol. 8, pp. 1288–1291. https://doi.org/10.1016/j.molp.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  43. Ali, Z., Eid, A., Ali, S., and Mahfouz, M.M., Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis, Virus Res., 2018, vol. 244, pp. 333–337. https://doi.org/10.1016/j.virusres.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  44. Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M.A., Zumstein, K., Garcha, J., Winte, S., Masson, H., Inagaki, S., Federici, F., Sinha, N., Deal, R.B., Bailey-Serres, J., and Brady, S.M., Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model, Plant Physiol., 2014, vol. 166, pp. 455–469. https://doi.org/10.1104/pp.114.239392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Serbinov, I.L., Bacterial cancer of fruit trees, berry bushes and other garden and agricultural plants, Plodovodstvo, 1912, no. 9, pp. 787–795.

  46. Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman, A.P., Dobbs, D., Joung, J.K., Voytas, D.F., and Stupar, R.M., Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases, Plant Physiol., 2011, vol. 156, pp. 466–473. https://doi.org/10.1104/pp.111.172981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jacobs, T.B. and Martin, G.B., High-throughput CRISPR vector construction and characterization of DNA modifications by generation of tomato hairy roots, J. Vis. Exp., 2016, vol. 110: 53843. https://doi.org/10.3791/53843

    Article  CAS  Google Scholar 

  48. Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., Han, T., and Hou, W., CRISPR/Cas9-mediated genome editing in soybean hairy roots, PLoS One, 2015, vol. 10: e0136064. https://doi.org/10.1371/journal.pone.0136064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., and Parrott, W.A., Targeted genome modifications in soybean with CRISPR/Cas9, BMC Biotechnol., 2015, vol. 15: 16. https://doi.org/10.1186/s12896-015-0131-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Michno, J.M., Wang, X., Liu, J., Curtin, S.J., Kono, T.J., and Stupar, R.M., CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme, GM Crops Food, 2015, vol. 6, pp. 243–252. https://doi.org/10.1080/21645698.2015.1106063

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., and Xi, Y., Targeted mutagenesis in soybean using the CRISPR-Cas9 system, Sci. Rep., 2015, vol. 5: 10342. https://doi.org/10.1038/srep10342

    Article  PubMed  PubMed Central  Google Scholar 

  52. Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., Cheng, H., and Yu, D., Efficient targeted mutagenesis in soybean by TALENs and CRI-SPR/Cas9, J. Biotechnol., 2016, vol. 217, pp. 90–97. https://doi.org/10.1016/j.jbiotec.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  53. Wang, L., Wang, L., Tan, Q., Fan, Q., Zhu, H., Hong, Z., Zhang, Z., and Duanmu, D., Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9, Front. Plant Sci., 2016, vol. 7: e01333. https://doi.org/10.3389/fpls.2016.01333

    Article  Google Scholar 

  54. Li, B., Cui, G., Shen, G., Zhan, Z., Huang, L., Chen, J., and Qi, X., Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza, Sci. Rep., 2017, vol. 7: 43320. https://doi.org/10.1038/srep43320

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhou, Z., Tan, H., Li, Q., Chen, J., Gao, S., Wang, Y., Chen, W., and Zhang, L., CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza, Phytochemistry, 2018, vol. 148, pp. 63–70. https://doi.org/10.1016/j.phytochem.2018.01.015

    Article  CAS  PubMed  Google Scholar 

  56. Iaffalando, B., Zhang, Y., and Cornish, K., C-RISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection, Ind. Crops Prod., 2016, vol. 89, pp. 356–362. https://doi.org/10.1016/j.indcrop.2016.05.029

    Article  CAS  Google Scholar 

  57. Kirchner, T.W., Niehaus, M., Debener, T., Schenk, M.K., and Herde, M., Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata, PLoS One, 2017, vol. 12: e0185429. https://doi.org/10.1371/journal.pone.0185429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakayasu, M., Akiyama, R., Lee, H.J., Osakabe, K., Osakabe, Y., Watanabe, B., Sugimoto, Y., Umemoto, N., Saito, K., Muranaka, T., and Mizutani, M., Generation of [alpha]-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St1-6DOX gene, Plant Physiol. Biochem., 2018, vol. 131, pp. 70–77. https://doi.org/10.1016/j.plaphy.2018.04.026

    Article  CAS  PubMed  Google Scholar 

  59. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., and Gao, C., Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol., 2013, vol. 31, pp. 686–688. https://doi.org/10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol., 2014, vol. 32, pp. 947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., and Tang, D., Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat, Plant J., 2017, vol. 91, pp. 714–724. https://doi.org/10.1111/tpj.13599

    Article  CAS  PubMed  Google Scholar 

  62. Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Guo, X., Du, W., Zhao, Y., and Xia, L., Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase, Mol. Plant, 2016, vol. 9, pp. 628–631. https://doi.org/10.1016/j.molp.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L., and Gao, C., Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA, Nat. Co-mmun., 2016, vol. 7: e12617. https://doi.org/10.1038/ncomms12617

    Article  CAS  Google Scholar 

  64. Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., and Mark Cigan, A., Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes, Nat. Commun., 2016, vol. 7: e13274. https://doi.org/10.1038/ncomms13274

    Article  CAS  Google Scholar 

  65. Martin-Ortigosa, S. and Wang, K., Proteolistics: a biolistic method for intracellular delivery of proteins, Transgenic Res., 2014, vol. 23, pp. 743–756. https://doi.org/10.1007/s11248-014-9807-y

    Article  CAS  PubMed  Google Scholar 

  66. Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., and Gao, C., Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nat. Commun., 2017, vol. 8: e14261. https://doi.org/10.1038/ncomms14261

    Article  CAS  Google Scholar 

  67. Liang, Z., Chen, K., Zhang, Y., Liu, J., Yin, K., Qiu, J.L., and Gao, C., Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins, Nat. Protoc., 2018, vol. 13, pp. 413–430. https://doi.org/10.1038/nprot.2017.145

    Article  CAS  PubMed  Google Scholar 

  68. Begemann, M.B., Gray, B.N., January, E., Gordon, G.C., He, Y., Liu, H., Wu, X., Brutnell, T.P., Mockler, T.C., and Oufattole, M., Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases, Sci. Rep., 2017, vol. 7: 11606. https://doi.org/10.1038/s41598-017-11760-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xie, K. and Yang, Y., RNA-guided genome editing in plants using a CRISPR-Cas system, Mol. Plant, 2013, vol. 6, pp. 1975–1983. https://doi.org/10.1093/mp/sst119

    Article  CAS  PubMed  Google Scholar 

  70. Butt, H., Eid, A., Ali, Z., Atia, M.A.M., Mokhtar, M.M., Hassan, N., Lee, C.M., Bao, G., and Mahfouz, M.M., Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule, Front. Plant Sci., 2017, vol. 24: e01441. https://doi.org/10.3389/fpls.2017.01441

    Article  Google Scholar 

  71. Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., Velasco, R., and Nagamangala Kanchiswamy, C., DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins, Front. Plant Sci., 2016, vol. 7: e01904. https://doi.org/10.3389/fpls.2016.01904

    Article  Google Scholar 

  72. Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., and Lee, G.J., Site-d-irected mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins, Plant Cell Rep., 2016, vol. 35, pp. 1535–1544. https://doi.org/10.1007/s00299-016-1937-7

    Article  CAS  PubMed  Google Scholar 

  73. Kim, D., Alptekin, B., and Budak, H., CRISPR/Cas9 genome editing in wheat, Funct. Integr. Genomics, 2018, vol. 18, pp. 31–41. https://doi.org/10.1007/s10142-017-0572-x

    Article  CAS  PubMed  Google Scholar 

  74. Hudzieczek, V., Cegan, R., Cermak, T., Bacovska, N., Machalkova, Z., Dolezal, K., Plihalova, L., Voytas, D., Hobza, R., and Vyskot, B., Agrobacterium rhizogenes-mediated transformation of a dioecious plant model S-ilene latifolia, New Biotechnol., 2018, vol. 48, pp. 20–28. https://doi.org/10.1016/j.nbt.2018.04.001

    Article  CAS  Google Scholar 

  75. Andersson, M., Turesson, H., Nicolia, A., Fält, A.S., Samuelsson, M., and Hofvander, P., Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts, Plant Cell Rep., 2017, vol. 36, pp. 117–128. https://doi.org/10.1007/s00299-016-2062-3

    Article  CAS  PubMed  Google Scholar 

  76. Andersson, M., Turesson, H., Olsson, N., Fält, A.S., Ohlsson, P., Gonzalez, M.N., Samuelsson, M., and Hofvander, P., Genome editing in potato via CRI-SPR-Cas9 ribonucleoprotein delivery, Physiol. Plant., 2018, vol. 164, pp. 378–384. https://doi.org/10.1111/ppl.12731

    Article  CAS  PubMed  Google Scholar 

  77. Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., and Kim, J.S., DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins, Nat. Biotechnol., 2015, vol. 33, pp. 1162–1164. https://doi.org/10.1038/nbt.3389

    Article  CAS  PubMed  Google Scholar 

  78. Kim, H., Kim, S.T., Ryu, J., Kang, B.C., Kim, J.S., and Kim, S.G., CRISPR/Cpf1-mediated DNA-free plant genome editing, Nat. Commun., 2017, vol. 8: 14406. https://doi.org/10.1038/ncomms14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P., and Xia, Q., CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum, Plant Mol. Biol., 2015, vol. 87, pp. 99–110. https://doi.org/10.1007/s11103-014-0263-0

    Article  CAS  PubMed  Google Scholar 

  80. Kopertekh, L. and Schiemann, J., Marker removal in transgenic plants using Cre recombinase delivered with potato virus X, Methods Mol. Biol., 2017, vol. 1642, pp. 151–168. https://doi.org/10.1007/978-1-4939-7169-5_10

    Article  CAS  PubMed  Google Scholar 

  81. Sprink, T., Eriksson, D., Schiemann, J., and Hartung, F., Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts, Plant Cell Rep., 2016, vol. 35, pp. 1493–1506. https://doi.org/10.1007/s00299-016-1990-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Podevin, N., Devos, Y., Davies, H.V., and Nielsen, K.M., Transgenic or not? No simple answer! New biotechnology-based plant breeding techniques and the regulatory landscape, EMBO Rep., 2012, vol. 13, pp. 1057–1061. https://doi.org/10.1038/embor.2012.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matveeva, T.V., Naturally transgenic plants as a model for the study of delayed environmental risks of cultivation of GMOs, Ecol. Genet., 2015, vol. 13, no. 2, pp. 118–126. https://doi.org/10.17816/ecogen132118-126

    Article  Google Scholar 

  84. Matveeva, T.V. and Azarakhsh, M., Genetically modified organisms authorized for cultivation and breeding in Russia, Ecol. Genet., 2016, vol. 14, no. 4, pp. 32–40. https://doi.org/10.17816/ecogen14432-40

    Article  Google Scholar 

  85. Baymiev, An.Kh., Kuluev, B.R., Vershinina, Z.R., Knyazev, A.V., Chemeris, D.A., Rozhnova, N.A., Gerashchenkov, G.A., Mikhailova, E.V., Baymiev, Al.Kh., and Chemeris, A.V., CRISPR/Cas genome editing (plants) and society, Biomics, 2017, vol. 9, no. 3, pp. 183–202.

    Google Scholar 

  86. Waltz, E., With a free pass, CRISPR-edited plants reach market in record time, Nat. Biotechnol., 2018, vol. 36, pp. 6–7. https://doi.org/10.1038/nbt0118-6b

    Article  CAS  PubMed  Google Scholar 

  87. Callaway, E., CRISPR plants now subject to tough GM laws in European Union, Nature, 2018, vol. 560: 16. https://doi.org/10.1038/d41586-018-05814-6

    Article  CAS  PubMed  Google Scholar 

  88. Urnov, F., Ronald, P.C., and Carroll, D., A call for science-based review of the European court’s decision on gene-edited crops, Nat. Biotechnol., 2018, vol. 36, pp. 800–802. https://doi.org/10.1038/nbt.4252

    Article  CAS  PubMed  Google Scholar 

  89. Gao, C., The future of CRISPR technologies in agriculture, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, pp. 275–276. https://doi.org/10.1038/nrm.2018.2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was performed within the framework of the State Assignment (project nos. АААА-А16-116020350028-4 and AAAA-A19-119021190011-0) and also supported by the Russian Foundation for Basic Research (project nos. 18-04-00118, 19-016-00117, and 19-016-00139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Kuluev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuluev, B.R., Gumerova, G.R., Mikhaylova, E.V. et al. Delivery of CRISPR/Cas Components into Higher Plant Cells for Genome Editing. Russ J Plant Physiol 66, 694–706 (2019). https://doi.org/10.1134/S102144371905011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371905011X

Keywords:

Navigation