Skip to main content
Log in

Responses of antioxidant gene and enzymes to salinity stress in the Cuminum cyminum L.

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Salt stress as a major limiting factor negatively affects many physiological processes in plants. Salinity promotes the generation of reactive oxygen species and subsequently oxidative damage of cellular components. Plant salt stress tolerance requires activation of antioxidative pathways to prevent plant cell from injurious effects. In this study real-time quantitative reverse transcription–polymerase chain reaction was used to determine the protective role of two antioxidant genes, i.e. iron-superoxide dismutase (Fe-SOD) and catalase (CAT) in Cuminum cyminum L. after their treatment with 50, 100, 150 and 200 mM NaCl. Enzymatic activities were assayed spectrophotometrically for three antioxidants. Moreover, growth parameters, protein content and proline accumulation were measured. In comparison with the control plants, those plants which were exposed to 50 and 100 mM NaCl concentration accumulated higher levels of proline. At 50, 100 and 150 mM of NaCl plants showed higher superoxide dismutase, ascorbate peroxidase and catalase activities. The same condition also induced expression of the Fe-SOD and CAT genes at mRNA level. Protein content of the treated plants was significantly decreased at 50 mM NaCl and remained constant at other concentrations. Whereas, the growth parameters, with one exception in case of shoot length, did not change at plants receiving low and mild salt concentrations of up to 150 mM NaCl, 200 mM of NaCl affected these parameters negatively. From these details, it can be concluded that C. cyminum respond to salt stress by antioxidant system efficiency and proline accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

DR:

dehydroascorbatereductase

GPX:

glutathione peroxidase

GR:

glutathione reductase

H2O2 :

hydrogen peroxide

MR:

monodehydroascorbate reductase

NBT:

nitro blue tetrazolium

O2 •− :

superoxide radical

OH :

hydroxyl radical

1O2 :

singlet oxygen

SOD:

superoxide dismutase

References

  1. Pal, M., Singh, D.K., Rao, L.S., and Singh, K.P., Photosynthetic characteristics and activity of antioxidant enzymes in salinity tolerant and sensitive rice cultivars, Indian J. Plant Physiol., 2004, vol. 9, pp. 407–412.

    CAS  Google Scholar 

  2. Bartels, D. and Sunkar, R., Drought and salt tolerance in plants, Crit. Rev. Plant Sci., 2005, vol. 24, pp. 23–58.

    Article  CAS  Google Scholar 

  3. Mittova, V., Guy, M., Tal, M., and Volokita, M., Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii, J. Exp. Bot., 2004, vol. 55, pp. 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  4. Attia, H., Arnaud, N., Karray, N., and Lachaâl, M., Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves, Physiol. Plant., 2008, vol. 132, pp. 293–305.

    Article  CAS  PubMed  Google Scholar 

  5. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  6. Mittler, R., Vanderauwera, S., Gollery, M., and van Breusegem, F., Reactive oxygen gene network of plants, Trends Plant Sci., 2004, vol. 9, pp. 490–498.

    Article  CAS  PubMed  Google Scholar 

  7. Pignocchi, C., Fletcher, J.M., Wilkinson, J.E., Barnes, J.D., and Foyer, C.H., The function of ascorbate oxidase in tobacco, Plant Physiol., 2003, vol. 132, pp. 1631–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thippeswamy, N.B. and Naidu, K.A., Antioxidant potency of cumin varieties—cumin, black cumin and bitter cumin—on antioxidant systems, Eur. Food Res. Technol., 2005, vol. 220, pp. 472–476.

    Article  CAS  Google Scholar 

  9. Rebey, I.B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., and Marzouk, B., Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds, Ind. Crop. Prod., 2012, vol. 36, pp. 238–245.

    Article  Google Scholar 

  10. Oroojalian, F., Kasra-Kermanshahi, R., Azizi, M., and Bassami, M.R., Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens, Food Chem., 2010, vol. 120, pp. 765–770.

    Article  CAS  Google Scholar 

  11. Johri, R.K., Cuminum cyminum and Carum carvi: an update, Pharmacogn. Rev., 2011, vol. 5, pp. 63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Martino, L., De Feo, V., Fratianni, F., and Nazzaro, F., Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components, Nat. Prod. Commun., 2009, vol. 4, pp. 1741–1750.

    PubMed  Google Scholar 

  13. Bates, L., Waldren, R., and Teare, I., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  14. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  15. Beauchamp, C. and Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, no. 1, pp. 276–287.

    Article  CAS  PubMed  Google Scholar 

  16. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  17. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  18. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  19. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    Article  CAS  PubMed  Google Scholar 

  20. Rubio, M.C., Bustos-Sanmamed, P., Clemente, M.R., and Becana, M., Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus, New Phytol., 2009, vol. 181, pp. 851–859.

    Article  CAS  PubMed  Google Scholar 

  21. Pandey, S., Patel, M.K., Mishra, A., and Jha, B., Physio-biochemical composition and untargeted metabolomics of cumin (Cuminum cyminum L.) make it promising functional food and help in mitigating salinity stress, PLoS One, 2015, vol. 10, p. e0144469

    Google Scholar 

  22. Shoor, M., Afrousheh, M., Rabeie, J., and Vahidi, M., The effect of salinity priming on germination and growth stage of cumin (Cuminum cyminum L), Res. J. Agric. Environ. Manage., 2014, vol. 3, pp. 340–352.

    Google Scholar 

  23. Szabados, L. and Savouré, A., Proline: a multifunctional amino acid, Trends Plant Sci., 2010, vol. 15, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  24. Torabi, S. and Niknam, V., Effects of iso-osmotic concentrations of NaCl and mannitol on some metabolic activity in calluses of two Salicornia species, In Vitro Cell. Dev. Biol.: Plant, 2011, vol. 47, pp. 734–742.

    Article  CAS  Google Scholar 

  25. Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., and McDonald, G.K., Additive effects of Na+ and Cl–ions on barley growth under salinity stress, J. Exp. Bot., 2011, vol. 62, pp. 2189–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aghaleh, M., Niknam, V., Ebrahimzadeh, H., and Razavi, K., Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea, Biol. Plant., 2009, vol. 53, pp. 243–248.

    Article  CAS  Google Scholar 

  27. Panda, S.K. and Khan, M.H., Growth, oxidative damage and antioxidant responses in greengram (Vigna radiata L.) under short-term salinity stress and its recovery, J. Agron. Crop Sci., 2009, vol. 195, pp. 442–454.

    Article  CAS  Google Scholar 

  28. Liu, Z.J., Guo, Y.K., and Bai, J.G., Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress, J. Plant Growth Regul., 2010, vol. 29, pp. 171–183.

    Article  Google Scholar 

  29. Hu, L., Li, H., Pang, H., and Fu, J., Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance, J. Plant Physiol., 2012, vol. 169, pp. 146–156.

    Article  CAS  PubMed  Google Scholar 

  30. Sekmen, A.H., Turkan, I., Tanyolac, Z.O., Ozfidan, C., and Dinc, A., Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark, Environ. Exp. Bot., 2012, vol. 77, pp. 63–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Afshar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, Z., Afshar, A.S. & Nematpour, F.S. Responses of antioxidant gene and enzymes to salinity stress in the Cuminum cyminum L.. Russ J Plant Physiol 64, 361–367 (2017). https://doi.org/10.1134/S1021443717030177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717030177

Keywords

Navigation