Skip to main content
Log in

Effect of extremely low frequency magnetic fields on the seedlings of wild plants growing in Central Yakutia

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

It was shown that permanent (B = 50 μT, horizontal plane, direction to the north) and alternating magnetic fields (North–South direction) exerted influences on seed germination as well as on cytological and biochemical features of seedlings characteristic of investigated species (Lepidium apetalum, Artemisia vulgaris, A. jacutica, and A. dracunculus) of wild plants growing in Central Yakutia. Under the effect of permanent magnetic field (MF), germinating capacity of seeds decreased (except for A. vulgaris), whereas alternating MF of different frequencies improved their germinating capacity, except for L. apetalum and A. jacutica at frequencies of 200 and 300 Hz, respectively. Under permanent MF, the rate of lipid peroxidation in the tissues of the seedlings decreased, whereas the content of low molecular weight antioxidants rose; when the plants were exposed to an alternating magnetic field, the content of MDA and peroxidase activity increased, and the content of low molecular weight antioxidants followed an ambiguous pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LMWA:

low molecular weight antioxidants

MF:

magnetic field

MI:

mitotic index

POX:

peroxidase

References

  1. Pazur, A., Schimek, C., and Galland, P., Magnetoreception in microorganisms and fungi, Cent. Eur. J. Biol., 2007, vol. 2, pp. 597–659.

    CAS  Google Scholar 

  2. Gao, W., Liu, Y., Zhou, J., and Pan, H., Effects of a strong static magnetic field on bacterium Shewanella oneidensis: an assessment by using whole genome microarray, Bioelectromagnetics, 2005, vol. 26, p. 558–563.

    Article  PubMed  Google Scholar 

  3. Buemi, M., Marino, D., Di Pasquale, G., Floccari, F., Senatore, M., Aloisi, C., Grasso, F., Mondio, G., Perillo, P., Frisina, N., and Corica, F., Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field, Nephron, 2001, vol. 87, pp. 269–673.

    Article  CAS  PubMed  Google Scholar 

  4. Small, D.P., Hüner, N.P., and Wan, W., Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae, Bioelectromagnetics, 2012, vol. 33, pp. 298–308.

    Article  CAS  PubMed  Google Scholar 

  5. Sharaf, El-Deen, S., Improvement of some characters of edible mushroom with magnetic field, Bull. NRC Egypt., 2003, vol. 28, pp. 709–717.

    Google Scholar 

  6. De Souza, A., Sueiro, L., González, L.M., Licea, L., Porras, E.P., and Gilart, F., Improvement of the growth and yield of lettuce plants by non-uniform magnetic fields, Electromagn. Biol. Med., 2008, vol. 27, pp. 173–184.

    Article  PubMed  Google Scholar 

  7. Ritz, T., Thalau, P., Phillips, J., Wiltschko, R., and Wiltschko, W., Resonance effects indicate a radicalpair mechanism for avian magnetic compass, Nature, 2004, vol. 429, pp. 177–180.

    Article  CAS  PubMed  Google Scholar 

  8. Penuelas, J., Llusia, J., Martínez, B., and Fontcuberta, J., Diamagnetic susceptibility and root growth responses to magnetic fields in Lens culinaris, Glycine soja, and Triticum aestivum, Electromagn. Biol. Med., 2004, vol. 23, pp. 97–112.

    Article  Google Scholar 

  9. Rácuciu, M., Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Cucurbita pepo seedlings, Rom. Biotech. Lett., 2012, vol. 17, pp. 7662–7672.

    Google Scholar 

  10. Dhawi, F., Al-Khayri, J.M., and Essam, H., Static magnetic field influence on elements composition in date palm (Phoenix dactylifera L.), Res. J. Agric. Biol. Sci., 2009, vol. 5, pp. 161–166.

    CAS  Google Scholar 

  11. Belyavskaya, N.A., Biological effects due to weak magnetic field on plants, Adv. Space Res., 2004, vol. 34, pp. 1566–1574.

    Article  CAS  PubMed  Google Scholar 

  12. Shabrangi, A., Majd, A., Sheidai, M., Nabyouni, M., and Dorranian, D., Comparing effects of extremely low frequency electromagnetic fields on the biomass weight of C3 and C4 plants in early vegetative growth, Proc. Symp. “Progress in Electromagnetics Research”, Cambridge, 2010, pp. 593–598.

    Google Scholar 

  13. Huang, H.H. and Wang, S.R., The effects of 60Hz magnetic fields on plant growth, Nat. Sci., 2007, vol. 5, pp. 60–68.

    Google Scholar 

  14. Matveev, A.N., Elektrichestvo i magnetizm (Electricity and Magnetism), Moscow: Oniks 21 vek, 2005.

    Google Scholar 

  15. Pausheva, Z.P., Praktikum po tsitologii rastenii (Manual on Plant Cytology), Moscow: Kolos, 1974.

    Google Scholar 

  16. Ermakov, A.I., Metody biokhimicheskogo issledovaniya rastenii (Methods for Biochemical Plant Research), Leningrad: Agropromizdat, 1987.

    Google Scholar 

  17. Lebedeva, O.V., Ugarova, N.N., and Berezin, I.V., Kinetic study of o-dianisidine oxidation with hydrogen peroxide in the presence of horseradish peroxidase, Biokhimiya, 1977, vol. 42, no. 8, pp. 1372–1379.

    CAS  Google Scholar 

  18. Vladimirov, Yu.A. and Archakov, A.I., Perekisnoe okislenie lipidov v biologicheskikh membranakh (Lipid Reroxidation in Biological Membranes), Moscow: Nauka, 1972.

    Google Scholar 

  19. Usanov, A.D., Belyachenko, Y.A., Verkhov, D.G., Tyrnov, V.S., and Usanov, D.A., Effect of frequency of alternating magnetic field on stimulation of plants meristem mitotic activity, Biochem. Biophys., 2013, vol. 1, pp. 61–65.

    Google Scholar 

  20. Kolchanov, R.A., Effects of artificial magnetic fields on the growth and metabolism in the Columbian grass, Nauch. Ved. Belgorod Gos. Univ., 2009, vol. 66, pp. 51–55.

    Google Scholar 

  21. Galland, P. and Pazur, A., Magnetoreception in plants, J. Plant Res., 2005, vol. 118, no. 6, pp. 371–398.

    Article  PubMed  Google Scholar 

  22. Vishki, F., Majd, A., Nejadsattari, T., and Arbabian, S., Effects of electromagnetic field radiation on inducing physiological and biochemical changes in Satureja bachtiarica L., Iran. J. Plant Physiol., 2012, vol. 2, pp. 509–516.

    Google Scholar 

  23. Serdyukov, Yu.A. and Novitskii, Yu.I., Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings, Russ. J. Plant Physiol., 2013, vol. 60, pp. 69–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Shashurin.

Additional information

Original Russian Text © M.M. Shashurin, I.A. Prokopiev, G.V. Filippova, A.N. Zhuravskaya, A.A. Korsakov, 2017, published in Fiziologiya Rastenii, 2017, Vol. 64, No. 3, pp. 220–227.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashurin, M.M., Prokopiev, I.A., Filippova, G.V. et al. Effect of extremely low frequency magnetic fields on the seedlings of wild plants growing in Central Yakutia. Russ J Plant Physiol 64, 438–444 (2017). https://doi.org/10.1134/S1021443717030165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717030165

Keywords

Navigation