Skip to main content
Log in

Synthesis and biological activities of novel pyridazine derivatives

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A series of pyridazine derivatives was synthesized and some of them showed a growth stimulatory activity during preliminary screening. Their effects on germination, morphogenesis, peroxidase activity and lignan content were tested on common bean (Phaseolus vulgaris L.) plants. 2-[4-(6-ethoxy-pyridazin-3-ylsulfanyl)-6-ethylamino-[1,3,5]triazin-2-ylsulfanyl]-acetamide (C8) accelerated flowering and fruit production. In these plants, total lignan amount in the leaves correlated with the corresponding peroxidase activities. This compound can be recommended against the lodging of crops. Like IAA, 2-(6-ethoxy-pyridazin-3-yl)-isothiourea hydrochloride (C3) stimulated adventitious root growth with necrotic transformation of the bottom stem node. It promoted growth of leaves, the early reproductive development and pod formation. Preparations C3 and C8 can be recommended for the shortening of the juvenile time. In plants treated with each of these compounds, the highest content of lignans was recorded possibly relating to type I “non-host”—like plants resistance. 2-(6-chloro-pyridazin-3-yl)-isothiourea hydrochloride (C2) exerted a stimulatory effect on the growth of vegetative organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C2 :

2-(6-chloro-pyridazin-3-yl)-isothiourea hydrochloride

C3 :

2-(6-ethoxy-pyridazin-3-yl)-isothiourea hydrochloride

C8 :

2-[4-(6-ethoxy-pyridazin-3-ylsulfanyl)-6-ethylamino-[1, 3, 5]triazin-2-ylsulfanyl]-acetamide

References

  1. Compendium of Pesticide Common Names. Classified Lists of Pesticides. http://www.alanwood.net/pesticides/ classpesticides.html.

  2. Dovlatyan, V., Khachatryan, N., Ovsyannikova, T., and Markina, L., RF Patent 1383748, 1988.

    Google Scholar 

  3. Xu, H., Hu, X.H., Zou, X.M., Liu, B., Zhu, Y.Q., Wang, Y., Hu, F.Z., and Yang, H.Z., Synthesis and herbicidal activities of novel 3-N-substituted amino-6-methyl-4-(3-trifluoromethylphenyl)pyridazine derivatives, J. Agric. Food Chem., 2008, vol. 56 P, pp. 6567–6572.

    Article  CAS  PubMed  Google Scholar 

  4. Hackler, R., Arnold, W., Dow, W., Johnson, G., and Kaster, S., Structure-activity relationships in (haloalkyl) pyridazines: a new class of systemic fungicides, J. Agric. Food Chem., 1990, vol. 38, pp. 508–514.

    Article  CAS  Google Scholar 

  5. Reynoso-Camacho, R., Ramos-Gomez, M., and Loarca-Pina, G., Bioactive components in common beans (Phaseolus vulgaris L.), in Advances in Agricultural and Food Biotechnology, Guevara-González, R. and Torres-Pacheco, I., Eds., Kerala, India, 2006, pp. 217–236.

    Google Scholar 

  6. Tripathi, A. and Gauta, M., Biochemical parameters of plants as indicators of air pollution, J. Environ. Biol., 2007, vol. 28, pp. 127–132.

    CAS  PubMed  Google Scholar 

  7. Fadila, K., Houria, D., Rachid, R., and Reda, D., Cellular response of a pollution bioindicator model (Ramalina farinacea) following treatment with fertilizer (NPKs), Am.-Euras. J. Toxicol. Sci., 2009, vol. 1, pp. 69–73.

    Google Scholar 

  8. Hammerschmidt, R., Nuckles, E., and Kuć, J., Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium, Physiol. Plant Pathol., 1982, vol. 20, pp. 73–82.

    Article  CAS  Google Scholar 

  9. Ainsworth, E., Yendrek, C., Sitch, S., Collins, W., and Emberson, L., The effects of tropospheric ozone on net primary productivity and implications for climate change, Annu. Rev. Plant Biol., 2012, vol. 63, pp. 637–661.

    Article  CAS  PubMed  Google Scholar 

  10. Saitanis, C., Lekkas, D., Agathokleous, E., and Flouri, F., Screening agrochemicals as potential protectants of plants against ozone phytotoxicity, Environ. Pollut., 2015, vol. 197, pp. 247–255.

    Article  CAS  PubMed  Google Scholar 

  11. Gómez, Ros, L., Gabaldón, C., Pomar, F., Merino, F., Pedreño, M., and Ros, Barceló, A., Structural motifs of syringyl peroxidases predate not only the gymnosperm–angiosperm divergence but also the radiation of tracheophytes, New Phytol., 2007, vol. 173, pp. 63–78.

    Article  Google Scholar 

  12. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W., Lignin biosynthesis and structure, Plant Physiol., 2010, vol. 153, pp. 895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liszkay, A., Kenk, B., and Schopfer, P., Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth, Planta, 2003, vol. 217, pp. 658–667.

    Article  CAS  PubMed  Google Scholar 

  14. Yengoyan, A., Gomktsyan, T., Karapetyan, A., and Harutyunyan, S., RA Patent 2681A, 2012.

    Google Scholar 

  15. Yengoyan, A., Gomktsyan, T., Karapetyan, A., and Harutyunyan, S., RA Patent 2588A, 2012.

    Google Scholar 

  16. Vardapetyan, H., Kirakosyan, A., Oganesyan, A., Penesyan, A., and Alfermann, W., Effect of various elicitors on lignan biosynthesis in callus cultures of Linum austriacum, Russ. J. Plant Physiol., 2003, vol. 50, pp. 297–300.

    Article  CAS  Google Scholar 

  17. Vardapetyan, G., Oganesyan, A., and Tiratsuyan, S., Substrate specificity of peroxidase, Vestn. Mezhd. Akad. Nauk Ekol. Bezhop., 2005, vol. 10, pp. 161–164.

    Google Scholar 

  18. Lowry, O., Rosenbrough, N., Farr, A., and Randall, R., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  19. Bleecker, A. and Kende, H., Ethylene: a gaseous signal molecule in plant, Annu. Rev. Cell Dev. Biol., 2000, vol. 16, pp. 1–18.

    Article  CAS  PubMed  Google Scholar 

  20. Chang, C., Kwok, S., Bleecker, A., and Meyerowitz, E., Arabidopsis ethylene-response gene ETR1: similarity of product to two component regulators, Science, 1993, vol. 262, pp. 539–544.

    Article  CAS  PubMed  Google Scholar 

  21. Bezrukova, M., Lubyanova, A., and Fatkhutdinova, R., The involvement of wheat and common bean lectins in the control of cell division in the root apical meristems of various plant species, Russ. J. Plant Physiol., 2011, vol. 58, pp. 174–180.

    Article  CAS  Google Scholar 

  22. Sitbon, F., Hennion, S., Little, C., and Sundberg, B., Enhanced ethylene production and peroxidase activity in IAA-overproducing transgenic tobacco plants is associated with increased lignin content and altered lignin composition, Plant Sci., 1999, vol. 141, pp. 165–173.

    Article  CAS  Google Scholar 

  23. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., and Boerjan, W., Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids, Photochem. Rev., 2004, vol. 3, pp. 29–60.

    Article  CAS  Google Scholar 

  24. Montesano, M., Brander, G., and Palva, B., Pathogen derived elicitors: searching for receptors in plants, Mol. Plant Pathol., 2003, vol. 4, pp. 73–79.

    Article  CAS  PubMed  Google Scholar 

  25. Saleem, M., Kim, H., Ali, M., and Lee, Y., An update on bioactive plant lignans, Nat. Prod. Rep., 2005, vol. 22, pp. 696–716.

    Article  CAS  PubMed  Google Scholar 

  26. Silva, M.L., Martins, C.H., Lucarini, R., Sato, D.N., Pavan, F.R., Freitas N.H.A., Andrade L.N., Pereira, A.C., Bianco, T.N.C., Vinholis, A.H.C., Cunha, W.R., Bastos, J.K., Silva, R., and da Silva, Filho, A.A., Antimycobacterial activity of natural and semi-synthetic lignans, Z. Naturforsch., 2009, vol. 62c, pp. 779–784.

    Google Scholar 

  27. Ellis, J., Insights into nonhost disease resistance: can they assist disease control in agriculture? Plant Cell, 2006, vol. 18, pp. 523–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mysore, K., Crasta, O., Tuori, R., Folkerts, O., Swirsky, P., and Martin, G., Comprehensive transcript profiling of Pto and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato, Plant J., 2002, vol. 32, pp. 299–315.

    Article  CAS  PubMed  Google Scholar 

  29. Niks, R.E. and Marcel, T.C., Nonhost and basal resistance: how to explain specificity? New Phytol., 2009, vol. 182, pp. 817–828.

    Article  PubMed  Google Scholar 

  30. Endler, A. and Persson, A., Cellulose synthases and synthesis in Arabidopsis, Mol. Plant, 2011, vol. 4, pp. 199–211.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Tiratsuyan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiratsuyan, S.G., Hovhannisyan, A.A., Karapetyan, A.V. et al. Synthesis and biological activities of novel pyridazine derivatives. Russ J Plant Physiol 63, 656–662 (2016). https://doi.org/10.1134/S1021443716050125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716050125

Keywords

Navigation