Skip to main content
Log in

Characterization of Nicotiana tabacum plants expressing hybrid genes of cyanobacterial Δ9 or Δ12 acyl-lipid desaturases and thermostable lichenase

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We established transgenic lines of Nicotiana tabacum expressing hybrid genes of Synechocystis sp. PCC 6803 Δ12 (desA) acyllipid desaturase and Synechococcus vulcanus Δ9 (desC) acyllipid desaturase with or without sequence coding for transit peptide of Rubisco small subunit of Arabidopsis thaliana under control of a constitutive promoter. Reliable increase of linoleic acid portion (C18:2; Δ9,12) accompanied with decrease of α-linolenic acid (C18:3; Δ9,12,15) relative amount was detected for plants expressing hybrid desA::licBM3 gene. No reliable changes were detected in fatty acid profiles and unsaturation index of plants transformed with Δ9 desaturase gene desC::licBM3 lacking signals of intracellular targeting while expression of this gene with Arabidopsis thaliana Rubisco small subunit transit peptide sequence caused growth of C18:3 α-linolenic acid part simultaneously with reduction of C18:2 linoleic acid part, as well as increase of unsat-uration index. No changes in relative amount of Δ9-monounsaturated fatty acids were observed in any of studied lines. All plants expressing desaturase genes exhibited enhanced levels of superoxide dismutase (SOD) activity after cold treatment in contrast to control lines with suppressed SOD activity after cold treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACP:

acyl carrier protein

CoA:

coenzyme A

FA:

fatty acid

GFP:

green fluorescent protein

RTP:

transit peptide of Rubisco small subunit

SOD:

superoxide dismutase

TSP:

total soluble protein

References

  1. Los, D.A., Mironov, K.S., and Allakhverdiev, S.I., Regulatory role of membrane fluidity in gene expression and physiological functions, Photosynth. Res., 2013, vol. 116, pp. 489–509.

    Article  CAS  PubMed  Google Scholar 

  2. Los, D.A. and Murata, N., Structure and expression of fatty acid desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, pp. 3–15.

    Article  CAS  PubMed  Google Scholar 

  3. Napier, J.A., The production of unusual fatty acids in transgenic plants, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 295–319.

    Article  CAS  PubMed  Google Scholar 

  4. Fukuchi-Mizutani, M., Savin, K., Cornish, E., Tanaka, Y., Ashikari, T., Kusumi, T., and Murata, N., Senescence-induced expression of a homologue of delta 9 desaturase in rose petals, Plant Mol. Biol., 1995, vol. 29, pp. 627–635.

    Article  CAS  PubMed  Google Scholar 

  5. Fukuchi-Mizutani, M., Tasaka, Y., Tanaka, Y., Ashikari, T., Kusumi, T., and Murata, N., Characterization of delta 9 acyl-lipid desaturase homologues from Arabidopsis thaliana, Plant Cell Physiol., 1998, vol. 39, pp. 247–253.

    Article  CAS  PubMed  Google Scholar 

  6. Maali-Amiri, R., Goldenkova-Pavlova, I.V., Yur’eva, N.O., Pchelkin, V.P., Tsydendambaev, V.D., Vereshchagin, A.G., Deryabin, A.N., Trunova, T.I., Los’, D.A., and Nosov, A.M., Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium, Russ. J. Plant Physiol., 2007, vol. 54, pp. 600–606.

    Article  CAS  Google Scholar 

  7. Palma, M., Grillo, S., Massarelli, I., Costa, A., Balogh, G., Vigh, L., and Leone, A., Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants, Mol. Breed., 2008, vol. 21, pp. 15–26.

    Article  Google Scholar 

  8. Piruzian, E., Goldenkova, I., Musiychuk, K., Kobets, N., Arman, I., Bobrysheva, I., Chekhuta, I., and Glazkova, D., A reporter system for prokaryotic and eukaryotic cells based on the thermostable lichenase from Clostridium thermocellum, Mol. Genet. Genom., 2002, vol. 266, pp. 778–786.

    Article  CAS  Google Scholar 

  9. Maali Amiri, R., Yur’eva, N.O., Shimshilashvili, K.R., Goldenkova-Pavlova, I.V., Pchelkin, V.P., Kuznitsova, E.I., Tsydendambaev, V.D., Trunova, T.I., Los, D.A., Jouzani, G.S., and Nosov, A.M., Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato, J. Integr. Plant Biol., 2010, vol. 52, pp. 289–297.

    Article  Google Scholar 

  10. Kiseleva, L.L., Serebriiskaya, T.S., Horvath, I., Vigh, L., Lyukevich, A.A., and Los, D.A., Expression of the gene for the Δ 9 acyl-lipid desaturase in the thermophilic cyanobacterium, J. Mol. Microbiol. Biotechnol., 2000, vol. 2, pp. 331–338.

    CAS  PubMed  Google Scholar 

  11. Wada, H., Combos, Z., and Murata, N., Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation, Nature, 1990, vol. 347, pp. 200–203.

    Article  CAS  PubMed  Google Scholar 

  12. Zverlov, V.V., Laptev, D.A., Tishkov, V.I., and Velikod-vorskaja, G.A., Nucleotide sequence of the Clostridium thermocellum laminarinase gene, Biochem. Biophys. Res. Commun., 1991, vol. 181, pp. 507–512.

    Article  CAS  PubMed  Google Scholar 

  13. Gerasimenko, I.M., Golovach, I.S., Kishchenko, E.M., Sakhno, L.A., Sindarovskaya, Ya.R., Shimshila-shvili, Kh.R., Shelud’ko, Yu.V., and Goldenkova-Pavlova, I.V., Preparation and analysis of transgenic plants carrying genes Δ9 and Δ12 desaturases of cyanobacteria, Inform. Vestn. Vavilov. Obcsh. Genet. Select., 2010, vol. 14, pp. 127–133.

    Google Scholar 

  14. Berdichevets, I.N., Shimshilashvili, H.R., Gerasy-menko, I.M., Sindarovska, Y.R., Sheludko, Y.V., and Goldenkova-Pavlova, I.V., Multiplex PCR assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants, Anal. Bioanal. Chem., 2010, vol. 397, pp. 2289–2293.

    Article  CAS  PubMed  Google Scholar 

  15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle to protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  16. Wood, T.M. and Bhat, K.M., Methods for measuring cellulase activities, Methods Enzymol., 1988, vol. 160, pp. 87–112.

    Article  CAS  Google Scholar 

  17. Garces, R. and Mancha, M., One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues, Anal. Biochem., 1993, vol. 211, pp. 139–143.

    Article  CAS  PubMed  Google Scholar 

  18. Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K., Murata, N., Ohtani, T., and Toguri, T., Lowtemperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase, Nat. Biotechnol., 1996, vol. 14, pp. 1003–1006.

    Article  CAS  PubMed  Google Scholar 

  19. Schimming, S., Schwarz, W.H., and Staudenbauer, W.L., Properties of a thermoactive beta-1,31,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli, Biochem. Biophys. Res. Commun., 1991, vol. 177, pp. 447–452.

    Article  CAS  PubMed  Google Scholar 

  20. Maali, R., Shimshilashvili, Kh.R., Pchelkin, V.P., Tsydendambaev, V.D., Nosov, A.M., Los, D.A., and Goldenkova-Pavlova, I.V., Comparative expression in Escherichia coli of the native and hybrid genes for acyllipid delta(9) desaturase, Genetika, 2007, vol. 43, pp. 176–182.

    CAS  PubMed  Google Scholar 

  21. Abdeev, R.M., Abdeeva, I.A., Bruskin, S.S., Musiychuk, K.A., Goldenkova-Pavlova, I.V., and Piruzian, E.S., Bacterial thermostable beta-glucanases as a tool for plant functional genomics, Gene, 2009, vol. 436, pp. 81–89.

    Article  CAS  PubMed  Google Scholar 

  22. Gombos, Z., Wada, H., and Murata, N., The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 8787–8791.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Yu, S., Pan, L., Yang, Q., Min, P., Ren, Z., and Zhang, H., Comparison of the delta(12) fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes, J. Genet. Genom., 2008, vol. 35, pp. 679–685.

    Article  CAS  Google Scholar 

  24. Jung, J.H., Kim, H., Go, Y.S., Lee, S.B., Hur, C.G., Kim, H.U., and Suh, M.C., Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents, Plant Cell Rep., 2011, vol. 30, pp. 1881–1892.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, Z., Wang, M.J., Hu, J.J., Lu, M.Z., and Wang, J.H., Improve freezing tolerance in transgenic poplar by overexpressing a Δ-3 fatty acid desaturase gene, Mol. Breed., 2010, vol. 25, pp. 571–579.

    Article  CAS  Google Scholar 

  26. Marillia, E.F., Giblin, E.M., Covello, P.S., and Taylor, D.C., A desaturase-like protein from white spruce is a delta(9) desaturase, FEBS Lett., 2002, vol. 526, pp. 49–52.

    Article  CAS  PubMed  Google Scholar 

  27. Yao, K., Bacchetto, R.G., Lockhart, K.M., Friesen, L.J., Potts, D.A., Covello, P.S., and Taylor, D.C., Expression of the Arabidopsis ADS1 gene in Brassica juncea results in a decreased level of total saturated fatty acids, Plant Biotechnol. J., 2003, vol. 1, pp. 221–229.

    Article  CAS  PubMed  Google Scholar 

  28. Craig, W., Lenzi, P., Scotti, N., De Palma M., Saggese, P., Carbone, V., McGrath, Curran, N., Magee, A.M., Medgyesy, P., Kavanagh, T.A., Dix, P.J., Grillo, S., and Cardi, T., Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance, Transgenic Res., 2008, vol. 17, pp. 769–782.

    Article  CAS  PubMed  Google Scholar 

  29. Heilmann, I., Pidkowich, M.S., Girke, T., and Shanklin, J., Switching desaturase enzyme specificity by alternate subcellular targeting, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 10266–10271.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Khadzhiev, T.A., Tyurin, A.A., Nikiforova, Kh.R., Chertova, N.V., and Goldenkova-Pavlova, I.V., Vector systems for studying the functional role of desaturases depending on their localization within the plant cell, Mater. Mezhdunarod. konf. “Fiziologiya rastenii — teoreticheskaya osnova innovatsionnykh agroi fitobiotekhnologii”(Proc. Int. Conf. “Plant Physiology — Theoretical Basics for Innovative Agricultural and Phytobiotehnology”), Kaliningrad, 2014, part II, pp. 454–456.

    Google Scholar 

  31. Yur’eva, N.O., Kirsanova, S.N., Kukushkina, L.N., Pchelkin, V.P., Sobol’kova, G.I., Nikiforova, Kh.R., Goldenkova-Pavlova, I.V., Nosov, A.M., and Tsydendambaev, V.D., Expression of the gene encoding Δ12 acyllipid desaturase from Synechocystis sp. PCC 6803 improves potato plant resistance to late blight infection, Russ. J. Plant Physiol., 2014, vol. 61, pp. 672–678.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Goldenkova-Pavlova.

Additional information

Published in the author’s version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasymenko, I.M., Sakhno, L.A., Kyrpa, T.N. et al. Characterization of Nicotiana tabacum plants expressing hybrid genes of cyanobacterial Δ9 or Δ12 acyl-lipid desaturases and thermostable lichenase. Russ J Plant Physiol 62, 283–291 (2015). https://doi.org/10.1134/S1021443715030073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715030073

Keywords

Navigation