Skip to main content
Log in

Modulation of polyamine levels in ginseng hairy root cultures subjected to salt stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Modulation of differential gene expression and change of polyamine content by salt stress are analyzed for the first time in a well-known medicinal plant, Panax ginseng C.A. Meyer. Three ginseng genes (PgSPD, PgSAMDC, and PgADC) involved in polyamine biosynthesis showed differential up-regulation patterns after 1 and 7 days of salt treatments. The modulation of gene expression resulted in the elevation of total polyamine content with relatively high levels of spermidine and spermine, while putrescine level diminished depending on the salt concentration. Conversely, salt stress led to a significant increase in diamine oxidase and subsequent decline in polyamine oxidase. The proline content caused by salinity follows a similar pattern as the total polyamine content and exogenous spermidine also resulted in the alleviation of proline content under salinity. Further, polyamine biosynthesis inhibitors, such as cyclohexylamine and methylglyoxal bis-(guanylhydrazone) mediated down-regulation of PgSPD and PgSAMDC, and affected cellular polyamine levels. Thus, polyamines may enhance the ginseng plant tolerance in response to the salt stress by increasing the levels of endogenous polyamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHA:

cyclohexylamine

DAO:

diamine oxidase

EST:

expressed sequence tag

MGBG:

methylglyoxal bis-(guanylhydrazone)

PA:

polyamine

PAO:

polyamine oxidase

Put:

putrescine

qRT-PCR:

quantitative real-time Reverse Transcription-Polymerase Chain Reaction

Spd:

spermidine

SPD:

spermidine synthase

Spm:

spermine

References

  1. Sairam, R.K. and Tyagi, A., Physiology and Molecular Biology of Salinity Stress Tolerance in Plants, Curr. Sci., 2004, vol. 86, pp. 407–421.

    CAS  Google Scholar 

  2. Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines and Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.

    Article  CAS  Google Scholar 

  3. Groppra, M.D. and Benavides, M.P., Polyamines and Abiotic Stress: Recent Advances, Amino Acids, 2008, vol. 34, pp. 35–45.

    Article  Google Scholar 

  4. Kusano, T., Berberich, T., Tateda, C., and Takahashi, Y., Polyamines: Essential Factors for Growth and Survival, Planta, 2008, vol. 228, pp. 367–381.

    Article  PubMed  CAS  Google Scholar 

  5. Santa-Cruz, A., Acosta, M., Perez-Alfocea, F., and Bolarin, M.C., Changes of Free Polyamine Levels Induced by Salt Stress in Leaves of Cultured and Wild Tomato Species, Physiol. Plant., 1999, vol. 101, pp. 341–346.

    Article  Google Scholar 

  6. Walter, D.R., Resistance to Plant Pathogens; Possible Role of Free Polyamines and Polyamine Catabolism, New Phytol., 2003, vol. 159, pp. 109–115.

    Article  Google Scholar 

  7. Duan, J., Li, J., Guo, S., and Kang, Y., Exogenous Spermidine Affects Polyamine Metabolism in Salinity-Stressed Cucumis sativus Roots and Enhances Short-Term Salinity Tolerance, J. Plant Physiol., 2008, vol. 165, pp. 1620–1635.

    Article  PubMed  CAS  Google Scholar 

  8. Parvin, S., Kim, Y.J., Pulla, R.K., Sathiyamoorthy, S., Miah, M.G., Kim, Y.J., Wasnik, N.G., and Yang, D.C., Identification and Characterization of Spermidine Synthase Gene from Panax ginseng, Mol. Biol. Rep., 2010, vol. 37, pp. 923–932.

    Article  PubMed  CAS  Google Scholar 

  9. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and BioAssays with Tobacco Tissue, Physiol. Plant., 1963, vol. 15, pp. 473–497.

    Article  Google Scholar 

  10. Parvin, S., Pulla, R.K., Shim, J.S., Kim, Y.J., Jung, D.Y., and Yang, D.C., Isolation and Characterization of Cinnamoyl-CoA Reductase Gene from Panax ginseng C. A. Meyer, J. Ginseng Res., 2008, vol. 32, pp. 232–237.

    Article  CAS  Google Scholar 

  11. Sathiyamoorthy, S., In, J.G., Gayathri, S., Kim, Y.J., and Yang, D.C., Generation and Gene Ontology Based Analysis of Expressed Sequence Tags (EST) from a Panax ginseng C. A. Meyer Roots, Mol. Biol. Rep., 2009, vol. 37, pp. 3465–3472.

    Article  PubMed  Google Scholar 

  12. Marce, M., Brown, D.S., Capelli, T., Figueras, X., and Tiburcio, A.F., Rapid High Performance Liquid Chromatographic Method for the Quantitation of Polyamines as Their Dansyl Derivatives: Application to Plant and Animal Tissues, J. Chromatogr., B, 1995, vol. 666, pp. 329–335.

    Article  CAS  Google Scholar 

  13. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid Determination of Free Proline for Water Stress Studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  14. Su, G.X., An, Z.F., Zhang, W.H., and Liu, Y.L., Light Promotes the Synthesis of Lignin through the Production of H2O2 Mediated by Diamine Oxidases in Soybean Hypocotyls, J. Plant Physiol., 2005, vol. 162, pp. 1297–1303.

    Article  PubMed  CAS  Google Scholar 

  15. Korolev, S., Ikeguchi, Y., Sharina, T., Beasley, S., Arrowsmith, C., Edwards, A., Joachimiak, A., Pegg, A.E., and Savchenko, A., The Crystal Structure of Spermidine Synthase with a Multisubstrate Adduct Inhibitor, Nat. Struct. Biol., 2002, vol. 9, pp. 27–31.

    Article  PubMed  CAS  Google Scholar 

  16. Munns, R., Comparative Physiology of Salt and Water Stress, Plant Cell Environ., 2002, vol. 25, pp. 239–250.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, J.H., Nada, K., Honda, C., Kitashiba, H., Wen, X.P., Pang, X.M., and Moriguchi, T., Polyamine Biosynthesis of Apple Callus under Salt Stress: Importance of the Arginine Decarboxylase Pathway in Stress Response, J. Exp. Bot., 2006, vol. 57, pp. 2589–2599.

    Article  PubMed  CAS  Google Scholar 

  18. Reggiani, R., Bozo, S., and Bertani, A., Changes in Polyamine Metabolism in Seedlings of Three Wheat (Triticum aestivum L.) Cultivars Differing in Salt Sensitivity, Plant Sci., 1994, vol. 102, pp. 121–126.

    Article  CAS  Google Scholar 

  19. Jimenez-Bremont, J.F., Becerra, F.A., Hernandez-Lucero, E., Rodríguez-Kessler, M., Acosta-Gallegos, J.A., and Ramírez-Pimentel, J.G., Proline Accumulation in Two Bean Cultivars under Salt Stress and the Effect of Polyamines and Ornithine, Biol. Plant., 2006, vol. 50, pp. 763–766.

    Article  CAS  Google Scholar 

  20. Goyal, M. and Asthir, B., Polyamine Catabolism Influences Antioxidative Defense Mechanism in Shoots and Roots of Five Wheat Genotypes under High Temperature Stress, Plant Growth Regul., 2010, vol. 60, pp. 13–25.

    Article  CAS  Google Scholar 

  21. Roychoudhurya, A., Basub, S., and Senguptab, D.N., Amelioration of Salinity Stress by Exogenously Applied Spermidine or Spermine in Three Varieties of Indica Rice Differing in Their Level of Salt Tolerance, J. Plant Physiol., 2010, doi 10.1016/j.jplph.2010.07.009

  22. Torrigiani, P., Serafini-Fracassini, D., and Bagni, N., Polyamine Biosynthesis and Effect of Dicyclohexylamine during the Cell Cycle of Helianthus tuberosus, Plant Physiol., 1986, vol. 84, pp. 148–152.

    Article  Google Scholar 

  23. Mitchell, J.L.A., Mahan, D.W., McCann, P.P., and Qasba, P., Dicyclohexylamine Effect on HTC Cell Polyamine Content and Ornithine Decarboxylase Activity, Biochim. Biophys. Acta, 1985, vol. 840, pp. 309–315.

    Article  PubMed  CAS  Google Scholar 

  24. Bitonti, A.J., McCann, P.P., and Sjoerdsma, A., Restriction of Bacterial Growth by Inhibition of Polyamine Biosynthesis by Using Monofluoromethylornithine, Difluoromethylornithine and Dicyclohexylamine Sulphate, Biochem. J., 1982, vol. 208, pp. 435–441.

    PubMed  CAS  Google Scholar 

  25. Feirer, R.P., Wann, S.R., and Einspahr, D.W., The Effects of Spermidine Synthase Inhibitors on In Vitro Plant Development, Plant Growth Regul., 1985, vol. 3, pp. 319–327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Yang.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvin, S., Lee, O.R., Sathiyaraj, G. et al. Modulation of polyamine levels in ginseng hairy root cultures subjected to salt stress. Russ J Plant Physiol 59, 757–765 (2012). https://doi.org/10.1134/S102144371206012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371206012X

Keywords

Navigation