Skip to main content
Log in

Violaxanthin and diadinoxanthin cycles as an important photoprotective mechanism in photosynthesis

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The molecular mechanism and regulation of violaxanthin (Vx) and diadinoxanthin (Ddx) cycle are discussed. The influence of lipids on the de-epoxidation of the xanthophyll cycle pigments was investigated. Experiments on the significance of physical properties of the aggregates formed by inverted lipid micelles, which are necessary for de-epoxidation, on the conversion of Vx into antheraxanthin (Ax) and zeaxanthin (Zx) and diadinoxanthin (Ddx) to diatoxanthin (Dtx) were performed. Thickness of the hydrophobic fraction of the aggregates, size of the inverted micelles, suggested by mathematical description of the structures, and solubility of Vx and Ddx in various kinds of lipids were the next tested parameters. Obtained results show that the rate of de-epoxidation was strongly dependent on physicochemical properties of lipids. The key role for enzyme activation play non-bilayer lipids and the parameters of inverted micelles created by them, such as thickness, molecular dynamics of hydrophobic core, and their diameter. Additionally the influence of thylakoid lipids on the de-epoxidation of Vx, associated with the light-harvesting complex of PSII (LHCII) were carried out. Almost complete Vx de-epoxidation in the LHCII fractions containing high amounts of endogenous monogalactosyldiacylglycerol (MGDG) was observed in in vitro assays. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The presented results showed that MGDG and other nonlamellar lipids are necessary for the solubilization of Vx and Ddx and they provide also the three-dimensional structures, which are needed for the binding of de-epoxidases and for the accessibility of Vx and Ddx to these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Asc:

ascorbate

Ax:

antheraxanthin

Chl:

chlorophyll

DDE:

diadinoxanthin de-epoxidase

Ddx:

diadinoxanthin

DES:

de-epoxidation state

DGDG:

digalactosyldiacylglycerol

DM:

n-dodecyl-β-D-maltoside

Dtx:

diatoxanthin

DPH:

diphenylhexatriene

LHCII:

light-harvesting complex of photosystem II

MGDG:

monogalactosyldiacylglycerol

NPQ:

nonphotochemical quenching

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PE1:

1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine

PE2:

1,2-dilinoleoyl-sn-glycero-3-phosphatidylethanolamine

PE3:

1,2-dilinoleinoyl-sn-glycero-3-phosphatidylethanolamine

PE:

C16-1,2-dipalmitoyloleoyl-sn-glycero-3-phosphatidylethanolamine

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

qE:

energy-dependent nonphotochemical quenching

qI:

component of nonphotochemical quenching

SGC:

sucrose gradient centrifugation

TX-100:

Triton X-100

VDE:

violaxanthin de-epoxidase

Vx:

violaxanthin

ZE:

zeaxanthin epoxidase

Zx:

zeaxanthin

References

  1. Fryer, M.J., Oxborough, K., Mullineaux, P.M., and Baker, N.R., Imaging of Photo-Oxidative Stress Responses in Leaves, J. Exp. Bot., 2002, vol. 53, pp. 1249–1254.

    Article  PubMed  CAS  Google Scholar 

  2. Sapozhnikov, D.I., Krasnovskaya, T.A., and Maevskaya, A.N., Change in the Interrelationship of the Basic Carotenoids in the Plastids of Green Leaves under the Action of Light, Dokl. Akad. Nauk SSSR, 1957, vol. 113, pp. 465–467.

    CAS  Google Scholar 

  3. Yamamoto, H.Y., Nakayama, T.O.M., and Chichetser, C.O., Studies on the Light and Dark Interconversions of Leaf Xanthophylls, Arch. Biochem. Biophys., 1962, vol. 97, pp. 168–173.

    Article  PubMed  CAS  Google Scholar 

  4. Hager, A., The Reversible Light-Induced Conversions of Xanthophylls in the Chloroplast, Pigments in Plants, Czygan, F.-C., Ed., Stuttgart: Gustav Fischer, 1980, pp. 57–79.

    Google Scholar 

  5. Pfündel, E.E. and Bilger, W., Regulation and Possible Function of the Violaxanthin Cycle, Photosynth. Res., 1994, vol. 42, pp. 89–109.

    Article  Google Scholar 

  6. Stransky, H. and Hager, A., The Carotenoid Pattern and the Occurrence of the Light-Induced Xanthophyll Cycle in Various Classes of Algae: 6. Chemosystematic Study, Arch. Mikrobiol., 1970, vol. 73, pp. 315–323.

    Article  PubMed  CAS  Google Scholar 

  7. Lohr, M. and Wilhelm, C., Algae Displaying the Diadinoxanthin Cycle also Possess the Violaxanthin Cycle, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 8784–8789.

    Article  PubMed  CAS  Google Scholar 

  8. Jakob, T., Goss, R., and Wilhelm, C., Unusual pH-Dependence of Diadinoxanthin De-Epoxidase Activation Causes Chlororespiratory Induced Accumulation of Diatoxanthin in the Diatom Phaeodactylum tricornutum, J. Plant Physiol., 2001, vol. 158, pp. 383–390.

    Article  CAS  Google Scholar 

  9. Hager, A. and Holocher, K., Localization of the Xanthophylls Cycle Enzyme Violaxanthin De-Epoxidase within the Thylakoid Lumen and Abolition of Its Mobility by a (Light-Dependent) pH Decrease, Planta, 1994, vol. 192, pp. 581–589.

    Article  CAS  Google Scholar 

  10. Hager, A., Lichtbedingte pH-Erniedrigung in einem Chloroplastenkompartiment als Ursache der Enzymatischen Violaxanthin-Zeaxanthin Umwandlung; Beziehungen zur Photophosphorylierung, Planta, 1969, vol. 89, pp. 224–243.

    Article  CAS  Google Scholar 

  11. Yamamoto, H.Y., Biochemistry of the Violaxanthin Cycle in Higher-Plants, Pure Appl. Chem., 1979, vol. 51, pp. 639–648.

    Article  CAS  Google Scholar 

  12. Grouneva, I., Jakob, T., Wilhelm, C., and Goss, R., Influence of Ascorbate and pH on the Activity of the Diatom Xanthophyll Cycle Enzyme, Diadinoxanthin De-Epoxidase, Physiol. Plant., 2006, vol. 126, pp. 205–211.

    Article  CAS  Google Scholar 

  13. Yamamoto, H.Y. and Higashi, R.M., Violaxanthin De-Epoxidase. Lipid Composition and Substrate Specificity, Arch. Biochem. Biophys., 1978, vol. 190, pp. 514–522.

    Article  PubMed  CAS  Google Scholar 

  14. Joyard, J., Marechal, E., Miege, C., Block, M.A., Dorne, A.-J., and Douce, R., Structure, Distribution and Biosynthesis of Glycerolipids from Higher Plant Chloroplasts, Lipids in Photosynthesis, Murata, N. and Siegenthaler, P.A., Eds., The Netherlands: Kluwer, 1998, pp. 21–52.

    Google Scholar 

  15. Latowski, D., Kruk, J., Burda, K., Skrzynecka-Jaskier, M., Kostecka-Gugala, A., and Strzałka, K., Kinetics of Violaxanthin De-Epoxidation by Violaxanthin De-Epoxidase, a Xanthophyll Cycle Enzyme, Is Regulated by Membrane Fluidity in Model Lipid Bilayers, Eur. J. Biochem., 2002, vol. 269, pp. 4656–4665.

    Article  PubMed  CAS  Google Scholar 

  16. Latowski, D., Akerlund, H.-E., and Strzałka, K., Violaxanthin De-Epoxidase, the Xanthophyll Cycle Enzyme, Requires Lipid Hexagonal Structures for Its Activity, Biochemistry, 2004, vol. 43, pp. 4417–4420.

    Article  PubMed  CAS  Google Scholar 

  17. Goss, R., Lohr, M., Latowski, D., Grzyb, J., Vieler, A., Wilhelm, C., and Strzałka, K., Role of Hexagonal Structure Forming Lipids in Diadinoxanthin and Violaxanthin Solubilization and De-Epoxidation, Biochemistry, 2005, vol. 44, pp. 4028–4036.

    Article  PubMed  CAS  Google Scholar 

  18. Goss, R., Latowski, D., Grzyb, J., Vieler, A., Lohr, M., Wilhelm, C., and Strzałka, K., Lipid Dependence of Diadinoxanthin Solubilization and De-Epoxidation in Artificial Membrane Systems Resembling the Lipid Composition of the Natural Thylakoid Membrane, Biochim. Biophys. Acta, 2007, vol. 1768, pp. 67–75.

    Article  PubMed  CAS  Google Scholar 

  19. Harwood, J.L., Membrane Lipids in Algae, Lipids in Photosynthesis, Murata, N. and Siegenthaler, P.A., Eds., The Netherlands: Kluwer, 1998, pp. 53–64.

    Google Scholar 

  20. Demmig, B., Winter, K., Krüger, A., and Czygan, F.C., Photoinhibition and Zeaxanthin Formation in Intact Leaves. A Possible Role of the Xanthophyll Cycle in the Dissipation of Excess Light, Plant Physiol., 1987, vol. 84, pp. 218–224.

    Article  PubMed  CAS  Google Scholar 

  21. Niyogi, K.K., Grossman, A.R., and Björkman, O., Arabidopsis Mutants Define a Central Role for the Xanthophyll Cycle in the Regulation of Photosynthetic Energy Conversion, Plant Cell, 1998, vol. 10, pp. 1121–1134.

    Article  PubMed  CAS  Google Scholar 

  22. Havaux, M. and Niyogi, K.K., The Violaxanthin Cycle Protects Plants from Photooxidative Damage by More than One Mechanism, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 8762–8767.

    Article  PubMed  CAS  Google Scholar 

  23. Havaux, M., Dall’Osto, L., and Bassi, R., Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae, Plant Physiol., 2007, vol. 145, pp. 1506–1520.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson, M.P., Havaux, M., Triantaphyllides, C., Ksas, B., Pasca, A.A., Robert, B., Davison, P.A., Ruban, A.V., and Horton, P., Elevated Zeaxanthin Bound to Oligomeric LHCII Enhances the Resistance of Arabidopsis to Photooxidative Stress by a Lipidprotective, Antioxidant Mechanism, J. Biol. Chem., 2007, vol. 282, pp. 22605–22618.

    Article  PubMed  CAS  Google Scholar 

  25. Verhoeven, A.S., Adams, W.W. III, and Demmig-Adams, B., Close Relationship between the State of the Xanthophyll Cycle Pigments and Photosystem II Efficiency during Recovery from Winter Stress, Physiol. Plant., 1996, vol. 96, pp. 567–576.

    Article  CAS  Google Scholar 

  26. Jahns, P. and Miehe, B., Kinetic Correlation of Recovery from Photoinhibition and Zeaxanthin Epoxidation, Planta, 1996, vol. 198, pp. 202–210.

    Article  CAS  Google Scholar 

  27. Holt, N.E., Zigmantas, D., Valkunas, L., Li, X.P., Niyogi, K.K., and Fleming, G.R., Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting, Science, 2005, vol. 307, pp. 433–436.

    Article  PubMed  CAS  Google Scholar 

  28. Avenson, T.J., Ahn, T.K., Zigmantas, D., Niyogi, K.K., Li, Z., Ballottari, M., Bassi, R., and Fleming, G.R., Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna, J. Biol. Chem., 2008, vol. 283, pp. 3550–3558.

    Article  PubMed  CAS  Google Scholar 

  29. Horton, P., Wentworth, M., and Ruban, A., Control of the Light Harvesting Function of Chloroplast Membranes: The LHCII-Aggregation Model for Non-Photochemical Quenching, FEBS Lett., 2005, vol. 579, pp. 4201–4206.

    Article  PubMed  CAS  Google Scholar 

  30. Pascal, A.A., Liu, Z.F., Broess, K., van Oort, B., van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W.R., and Ruban, A., Molecular Basis of Photoprotection and Control of Photosynthetic Light-Harvesting, Nature, 2005, vol. 436, pp. 134–137.

    Article  PubMed  CAS  Google Scholar 

  31. Jahns, P., Latowski, D., and Strzałka, K., Mechanism and Regulation of the Violaxanthin Cycle: The Role of Antenna Proteins and Membrane Lipids, Biochim. Biophys. Acta, 2009, vol. 1787, pp. 3–14.

    Article  PubMed  CAS  Google Scholar 

  32. Ruban, A., Lavaud, J., Rousseau, B., Guglielmi, G., Horton, P., and Etienne, A.L., The Super-Excess l Energy Dissipation in Diatom Algae: Comparative Analysis with Higher Plants, Photosynth. Res., 2004, vol. 82, pp. 165–175.

    Article  PubMed  CAS  Google Scholar 

  33. Muller, P., Li, X.P., and Niyogi, K.K., Non-Photochemical Quenching. A Response to Excess Light Energy, Plant Physiol., 2001, vol. 125, pp. 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  34. Holt, N.E., Fleming, G.R., and Niyogi, K.K., Toward an Understanding of the Mechanism of Nonphotochemical Quenching in Green Plants, Biochemistry, 2004, vol. 43, pp. 8281–8289.

    Article  PubMed  CAS  Google Scholar 

  35. Niyogi, K.K., Li, X.P., Rosenberg, V., and Jung, H.S., Is PsbS the Site of Nonphotochemical Quenching in Photosynthesis? J. Exp. Bot., 2005, vol. 56, pp. 375–382.

    Article  PubMed  CAS  Google Scholar 

  36. Horton, P., Ruban, A.V., Rees, D., Pascal, A.A., Noctor, G., and Young, A.J., Control of the Light Harvesting Function of Chloroplast Membranes by Aggregation of the LHC II Chlorophyll-Protein Complex, FEBS Lett., 1991, vol. 292, pp. 1–4.

    Article  PubMed  CAS  Google Scholar 

  37. Goss, R., Pintob, E.A., Wilhelma, C., and Richter, M., The Importance of a Highly Active and pH Regulated Diatoxanthin Epoxidase for the Regulation of the PS II Antenna Function in Diadinoxanthin Cycle Containing Algae, J. Plant Physiol., 2006, vol. 163, pp. 1008–1021.

    Article  PubMed  CAS  Google Scholar 

  38. Li, X-P., Björkman, O., Shih, C., Rosenquist, M., Jansson, S., and Niyogi, K.K., A Pigment-Binding Protein Essential for the Regulation of Photosynthetic Light Harvesting, Nature, 2000, vol. 403, pp. 391–395.

    Article  PubMed  CAS  Google Scholar 

  39. Li, X-P., Phippard, A., Pasari, J., and Niyogi, K.K., Structure-Function Analysis of Photosystem II Subunit S (PsbS) In Vivo, Funct. Plant Biol., 2002, vol. 29, pp. 1131–1139.

    Article  Google Scholar 

  40. Aspinall-O’Dea, M., Wentworth, M., Pascal, A., Robert, B., Ruban, A., and Horton, P., In Vitro Reconstruction of the Activated Zeaxanthin State Associated with Energy Dissipation in Plants, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 16331–16335.

    Article  PubMed  Google Scholar 

  41. Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Krörer, N., Lau, W.W.Y., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P., and Rokhsar, D.S., The Genome of the Diatom Thalassiosira pseudonana: Ecology, Evolution, and Metabolism, Science, 2004, vol. 306, pp. 79–86.

    Article  PubMed  CAS  Google Scholar 

  42. Krieger, A., Moya, I., and Weiss, E., Energy-Dependent Quenching of Chlorophyll a Fluorescence: Effect of pH on Stationary Fluorescence and Picosecond Relaxation Kinetics in Thylakoid Membranes and Photosystem II Preparations, Biochim. Biophys. Acta, 1992, vol. 1102, pp. 167–176.

    Article  CAS  Google Scholar 

  43. Wagner, B., Goss, R., Richter, M., Wild, A., and Holzwarth, A.R., Picosecond Time-Resolved Study on the Nature of High Energy State Quenching in Isolated Pea Thylakoids. Different Localization of Zeaxanthin Dependent and Independent Quenching Mechanisms, J. Photochem. Photobiol., B: Biol., 1996, vol. 36, pp. 339–350.

    Article  CAS  Google Scholar 

  44. Richter, M., Goss, R., Wagner, B., and Holzwarth, A.R., Characterization of the Slow and Fast Reversible Components of Non-Photochemical Quenching in Isolated Pea Thylakoids by Picosecond Time-Resolved Chlorophyll Fluorescence Analysis, Biochemistry, 1999, vol. 38, pp. 12 718–12 726.

    Article  CAS  Google Scholar 

  45. Lavaud, J., Rousseau, B., and Etienne, A.-L., In Diatoms, a Transthylakoid Proton Gradient Alone Is Not Sufficient to Induce a Non-Photochemical Fluorescence Quenching, FEBS Lett., 2002, vol. 523, pp. 163–166.

    Article  PubMed  CAS  Google Scholar 

  46. Provasoli, L., McLaughlin, J.J.A., and Droop, M.R., The Development of Artificial Media for Marine Algae, Arch. Mikrobiol., 1957, vol. 25, pp. 392–428.

    Article  PubMed  CAS  Google Scholar 

  47. Lohr, M. and Wilhelm, C., Xanthophyll Synthesis in Diatoms: Quantification of Putative Intermediates and Comparison of Pigment Conversion Kinetics with Rate Constants Derived from a Model, Planta, 2001, vol. 212, pp. 382–391.

    Article  PubMed  CAS  Google Scholar 

  48. Frommolt, R., Goss, R., and Wilhelm, C., The De-Epoxidase and Epoxidase Reactions of Mantoniella squamata (Prasinophyceae) Exhibit Different Substrate-Specific Reaction Kinetics Compared to Spinach, Planta, 2001, vol. 213, pp. 446–456.

    Article  PubMed  CAS  Google Scholar 

  49. Böhme, K., Wilhelm, C., and Goss, R., Light Regulation of Carotenoid Biosynthesis in the Prasinophycean Alga Mantoniella squamata, Photochem. Photobiol. Sci., 2002, vol. 1, pp. 619–628.

    Article  PubMed  Google Scholar 

  50. Wilhelm, C., Volkmar, P., Lohmann, C., Becker, A., and Meyer, M., The HPLC-Aided Pigment Analysis of Phytoplankton Cells as a Powerful Tool in Water Quality Control, Aqua, 1995, vol. 44, pp. 132–141.

    CAS  Google Scholar 

  51. Goss, R., Opitz, C., Lepetit, B., and Wilhelm, C., The Synthesis of NPQ-Effective Zeaxanthin Depends on the Presence of a Transmembrane Proton Gradient and a Slightly Basic Stromal Side of the Thylakoid Membrane, Planta, 2008, vol. 228, pp. 999–1009.

    Article  PubMed  CAS  Google Scholar 

  52. Krupa, Z., Huner, N.P.A., Williams, J.P., Maissan, E., and James, D.R., Development at Cold-Hardening Temperatures—the Structure and Composition of Purified Rye Light Harvesting Complex-II, Plant Physiol., 1987, vol. 84, pp. 19–24.

    Article  PubMed  CAS  Google Scholar 

  53. Folch, J., Lees, M., and Stanley, G.H.S., A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    PubMed  CAS  Google Scholar 

  54. Mock, T. and Kroon, B.M.A., Photosynthetic Energy Conversion under Extreme Conditions-I: Important Role of Lipids as Structural Modulators and Energy Sink under N-Limited Growth in Antarctic Sea Ice Diatoms, Phytochemistry, 2002, vol. 61, pp. 41–51.

    Article  PubMed  CAS  Google Scholar 

  55. Ventrella, A., Catucci, L., Mascolo, G., Corcelli, A., and Agostiano, A., Isolation and Characterization of Lipids Strictly Associated To PSII Complexes: Focus on Cardiolipin Structural and Functional Role, Biochim. Biophys. Acta, 2007, vol. 1768, pp. 1620–1627.

    Article  PubMed  CAS  Google Scholar 

  56. White, T., Bursten, S., Federighi, D., Lewis, R.A., and Nudelman, E., High-Resolution Separation and Quantification of Neutral Lipid and Phospholipid Species in Mammalian Cells and Sera by Multi-One-Dimensional Thin-Layer Chromatography, Anal. Biochem., 1998, vol. 258, pp. 109–117.

    Article  PubMed  CAS  Google Scholar 

  57. Sprague, G.S. and Staehelin, L.A., Effect of Reconstitution Method on the Structural Organization of Isolated Chloroplast Membrane Lipids, Biochim. Biophys. Acta, 1984, vol. 777, pp. 306–322.

    Article  CAS  Google Scholar 

  58. Schaller, S., Latowski, D., Jemiol-Rzemin-ska, M., Wilhelm, C., Strzałka, K., and Goss, R., The Main Thylakoid Membrane Lipid Monogalactosyldiacylglycerol (MGDG) Promotes the De-Epoxidation of Violaxanthin Associated with the Light-Harvesting Complex of Photosystem II (LHCII), Biochim. Biophys. Acta, 2010, vol. 1797, pp. 414–424.

    Article  PubMed  CAS  Google Scholar 

  59. Mewes, H. and Richter, M., Supplementary Ultraviolet-B Radiation Induces a Rapid Reversal of the Diadinoxanthin Cycle in the Strong Light-Exposed Diatom Phaeodactylum tricornutum, Plant Physiol., 2002, vol. 130, pp. 1527–1535.

    Article  PubMed  CAS  Google Scholar 

  60. Bassi, R., Pineau, B., Dainese, P., and Marquardt, J., Carotenoid-Binding Proteins of Photosystem II, Eur. J. Biochem., 1993, vol. 212, pp. 297–303.

    Article  PubMed  CAS  Google Scholar 

  61. Goss, R., Richter, M., and Wild, A., Pigment Composition of PS II Pigment Protein Complexes Purified by Anion Exchange Chromatography. Identification of Xanthophyll Cycle Pigment-Binding Proteins, J. Plant Physiol., 1997, vol. 151, pp. 115–119.

    CAS  Google Scholar 

  62. Tremolieres, A., Dainese, P., and Bassi, R., Heterogeneous Lipid Distribution among Chlorophyll-Binding Proteins of Photosystem II in Maize Mesophyll Chloroplasts, Eur. J. Biochem., 1994, vol. 221, pp. 721–730.

    Article  PubMed  CAS  Google Scholar 

  63. Bugos, R.C. and Yamamoto, H.Y., Molecular Cloning of Violaxanthin De-Epoxidase from Romain Lettuce and Expression in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 6320–6325.

    Article  PubMed  CAS  Google Scholar 

  64. Lavaud, J., Rousseau, B., and Etienne, A.-L., Enrichment of the Light-Harvesting Complex in Diadinoxanthin and Implications for the Nonphotochemical Fluorescence Quenching in Diatoms, Biochemistry, 2003, vol. 42, pp. 5802–5808.

    Article  PubMed  CAS  Google Scholar 

  65. Jarvis, P., Dormann, P., Peto, C.A., Lutes, J., Benning, C., and Chory, J., Galactolipid Deficiency and Abnormal Chloroplast Development in the Arabidopsis MGD Synthase 1 Mutant, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8175–8179.

    Article  PubMed  CAS  Google Scholar 

  66. Aronsson, H., Schottler, M.A., Kelly, A.A., Sundqvist, C., Dormann, P., Karim, S., and Jarvis, P., Monogalactosyldiacylglycerol Deficiency in Arabidopsis Affects Pigment Composition in the Prolamellar Body and Impairs Thylakoid Membrane Energization and Photoprotection in Leaves, Plant Physiol., 2008, vol. 148, pp. 580–592.

    Article  PubMed  CAS  Google Scholar 

  67. Latowski, D., Grzyb, J., and Strzałka, K., The Xanthophyll Cycle-Molecular Mechanism and Physiological Significance, Acta Physiol. Plant., 2004, vol. 26, pp. 197–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Latowski.

Additional information

Published in Russian in Fiziologiya Rastenii, 2011, Vol. 58, No. 6, pp. 804–816.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latowski, D., Schaller, S., Olchawa-Pajor, M. et al. Violaxanthin and diadinoxanthin cycles as an important photoprotective mechanism in photosynthesis. Russ J Plant Physiol 58, 952–964 (2011). https://doi.org/10.1134/S1021443711060124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711060124

Keywords

Navigation