Skip to main content
Log in

Effects of redox agents on protein tyrosine phosphorylation in pea roots

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Posttranslational protein modifications and their interaction are an important way for the regulation of activities of proteins and their supramolecular complexes. More than 50 soluble proteins phosphorylated on tyrosine were detected in pea (Pisum sativum L., cv. Truzhenik) roots by one- and two-dimensional electrophoresis and immunoblotting with a highly specific antibody (PY20). The level of tyrosine phosphorylation of these proteins was changed under in situ action of redox and alkylating agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PMSF:

phenylmethylsulfonyl fluoride

PP:

polypeptide

PTM:

posttraslational modification

PTPP:

phosphotyrosine polypeptides

PVDF membranes:

polyvinylene difluoride membranes

TBST:

Tris-buffered saline with Tween 20

TEMED:

tetramethylethylenediamine

TPK:

tyrosine protein kinase

LTP:

level of protein phosphorylation on tyrosine

TPP:

tyrosine protein phosphatase

References

  1. Hunter, T., Tyrosine Phosphorylation: Thirty Years and Counting, Curr. Opin. Cell Biol., 2009, vol. 21, pp. 140–146.

    Article  PubMed  CAS  Google Scholar 

  2. Torruella, M., Casano, L.M., and Vallejos, R.H., Evidence of the Activity of Tyrosine Kinase(s) and of the Presence of Phosphotyrosine Proteins in Pea Platelets, J. Biol. Chem., 1986, vol. 261, pp. 6651–6653.

    PubMed  CAS  Google Scholar 

  3. Zhang, K., Letham, D.S., and John, P.C., Cytokinin Controls the Cell Cycle at Mitosis by Stimulating the Tyrosine Dephosphorylation and Activation of P34cdc2-Like H1 Histone Kinase, Planta, 1996, vol. 200, pp. 2–12.

    Article  PubMed  CAS  Google Scholar 

  4. Mu, J.H., Lee, H.S., and Kao, T.H., Characterization of a Pollen-Expressed Receptor-Like Kinase Gene of Petunia inflate and the Activity of Its Encoded Kinase, Plant Cell, 1994, vol. 6, pp. 709–721.

    Article  PubMed  CAS  Google Scholar 

  5. Miranda-Saavedra, D. and Barton, G.J., Classification and Functional Annotation of Eukaryotic Protein Kinases, Proteins, 2007, vol. 68, pp. 893–914.

    Article  PubMed  CAS  Google Scholar 

  6. Carpi, A., Di Maira, G., Vedovato, M., Rossi, V., Naccari, T., Floriduz, M., Terzi, M., and Filippini, F., Comparative Proteome Bioinformatics: Identification of a Whole Complement of Putative Protein Tyrosine Kinases in the Model Flowering Plant Arabidopsis thaliana, Proteomics, 2002, vol. 2, pp. 1494–1503.

    Article  PubMed  CAS  Google Scholar 

  7. Gupta, R. and Luan, S., Redox Control of Protein Tyrosine Phosphatases and Mitogen-Activated Protein Kinases in Plants, Plant Physiol., 2003, vol. 132, pp. 1149–1152.

    Article  PubMed  CAS  Google Scholar 

  8. Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., and Ishihama, Y., Large-Scale Phosphorylation Mapping Reveals the Extent of Tyrosine Phosphorylation in Arabidopsis, Mol. Syst. Biol., 2008, vol. 4, pp. 1–7.

    Article  Google Scholar 

  9. Karimova, F.G., Protein Tyrosine Phosphorylation, Kletochnaya signalizatsiya (Cell Signalling), Grechkin, A.N., Ed., Kazan: Fen, 2010, pp. 37–45.

    Google Scholar 

  10. Shelton, M., Chock, P., and Mieyal, J., Glutaredoxin: Role in Reversible Protein S-Glutathionylation and Regulation of Redox Signal Tansduction and Protein Translocation, Antiox. Redox. Signal., 2005, vol. 7, pp. 348–366.

    Article  CAS  Google Scholar 

  11. Buchanan, B.B. and Balmer, I., Redox Regulation: A Broadening Horizon, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 187–220.

    Article  PubMed  CAS  Google Scholar 

  12. Gao, C., Xing, D., Li, L., and Zhang, L., Implication of Reactive Oxygen Species and Mitochondrial Dysfunction in the Early Stages of Plant Programmed Cell Death Induced by Ultraviolet-C Overexposure, Planta, 2008, vol. 227, pp. 755–767.

    Article  PubMed  CAS  Google Scholar 

  13. Wu, H.H. and Momand, J., Pyrrolidine Dithiocarbamate Prevents P53 Activation and Promotes P53 Cysteine Residue Oxidation, J. Biol. Chem., 1998, vol. 273, pp. 18 898–18 905.

    CAS  Google Scholar 

  14. Fedina, E.O., Karimova, F.G., and Tarchevsky, I.A., Effect of Brassinolide on Tyrosine Phosphorylation in Pea Leaf Proteins, Biochemistry (Moscow), 2006, vol. 71, pp. 423–429.

    Article  CAS  Google Scholar 

  15. Karimova, F.G. and Petrova, N.V., Effect of H2O2 on Tyrosine Phosphorylation of Pea Proteins, Russ. J. Plant Physiol., 2007, vol. 54, pp. 322–328.

    Article  CAS  Google Scholar 

  16. Mukhitov, A.R., Petrova, N.V., Vlasova, O.V., and Karimova, F.G., Confocal Scanning Microscopy for Identification of Protein Tyrosine Phosphorylation in Plants, Uch. Zapiski Kazanskogo Gos. Univ., 2008, vol. 150, pp. 144–154.

    Google Scholar 

  17. Meng, T.C., Fukada, T., and Tonks, N.K., Reversible Oxidation and Inactivation of Protein Tyrosine Phosphatases In Vivo, Mol. Cell Biol., 2002, vol. 9, pp. 387–399.

    CAS  Google Scholar 

  18. Pastory, G.M. and Foyer, C.H., Common Components, Networks, and Pathways of Cross-Tolerance to Stress. The Central Role of “Redox” and Abscisic Acid-Mediated Controls, Plant Physiol., 2002, vol. 129, pp. 460–468.

    Article  Google Scholar 

  19. Denu, J.M. and Tanner, K.G., Specific and Reversible Inactivation of Protein Tyrosine Phosphatase by Hydrogen Peroxide: Evidence for a Sulfonic Acid Intermediate and Implications for Redox Regulation, Biochemistry, 1998, vol. 37, pp. 5633–5642.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, J.R., Yoon, H.W., Kwon, K.S., Lee, S.-R., and Ree, S.G., Identification of Proteins Containing Cysteine Residues That Are Sensitive to Oxidation by Hydrogen Peroxide at Neutral pH, Anal. Biochem., 2000, vol. 283, pp. 214–221.

    Article  PubMed  CAS  Google Scholar 

  21. Salmeen, A., Andersen, J.N., Myers, M.P., Meng, T.-C., Hinks, J.A., Tonks, N.K., and Barford, D., Redox Regulation of Protein Tyrosine Phosphatase 1B Involves a Sulphenyl-Amide Intermediate, Nature, 2003, vol. 423, pp. 769–773.

    Article  PubMed  CAS  Google Scholar 

  22. Chiarugi, P. and Buricchi, F., Protein Tyrosine Phosphorylation and Reversible Oxidation: Two Cross-Talking Posttranslation Modifications, Antiox. Redox Signal., 2007, vol. 9, pp. 1–24.

    Article  CAS  Google Scholar 

  23. Dixon, D.P., Fordham-Skelton, A.P., and Edwards, R., Redox Regulation of a Soybean Tyrosine-Specific Protein Phosphatases, Biochemistry, 2005, vol. 44, pp. 7696–7703.

    Article  PubMed  CAS  Google Scholar 

  24. Alia, S.P.P. and Mohanty, P., Proline Enhances Primary Photochemical Activities in Isolated Thylakoid Membranes of Brassica juncea by Arresting Photoinhibitory Damage, Biochem. Biophys. Res. Commun., 1991, vol. 181, pp. 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  25. Dröge, W., Schulze-Osthoff, K., Mihm, S., Galter, D., Schenk, H., Eck, H.-P., Roth, S., and Gmünder, H., Function of Glutathione and Glutathione Disulfide in Immunology and Immunopathology, FASEB J., 1994, vol. 8, pp. 1131–1138.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Petrova.

Additional information

Original Russian Text © N.V. Petrova, F.G. Karimova, 2011, published in Fiziologiya Rastenii, 2011, Vol. 58, No. 5, pp. 750–757.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, N.V., Karimova, F.G. Effects of redox agents on protein tyrosine phosphorylation in pea roots. Russ J Plant Physiol 58, 899–905 (2011). https://doi.org/10.1134/S1021443711050165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711050165

Keywords

Navigation