Skip to main content
Log in

Rheological behaviors and molecular motions of semi-diluted Xanthan solutions under shear: Experimental studies

  • Rheology
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Semi-diluted Xanthan solution has been widely used in various fields, especially in enhancing oil recovery. The oscillatory shear and flow shear behaviors of Xanthan are important to oil flooding. The oscillatory shear relates to molecular motions, while flow shear reflects flowing characterization. In oscillatory shear mode, the storage modulus, loss modulus and tanδ has been measured. Calculating relaxation spectra through storage modulus, we found that the peak of segments’ relaxation heads to smaller relaxation time side. Also, the quantity of relaxation units increases as concentration increases. However, the relaxation time spectra are less affected by salinity. In flow shear mode, the relationship between shear rate and viscosity has been investigated. As concentration or salinity increases, the pseudoplastic of Xanthan solutions becomes more obvious. Furthermore, primary normal stress differences of Xanthan semi-diluted solutions lightly increase at first then sharply decrease as shear rate increases. This abnormal phenomenon may refer to wall slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Song, Y. S. Kim, and G. S. Chang, Fibers Polym. 7, 129 (2006).

    Article  Google Scholar 

  2. J. Higiro, T. J. Herald, and S. Alavi, Food Res. Int. 39, 165 (2006).

    Article  CAS  Google Scholar 

  3. H. M. Choi and B. Yoo, Food Chem. 116, 638 (2009).

    Article  CAS  Google Scholar 

  4. J. K. Leela and G. Sharma, Bioprocess. Eng. 23, 687 (2000).

    Article  Google Scholar 

  5. P. Cairns, M. J. Miles, and V. J. Morris, Nature (London) 322, 89 (1986).

    Article  CAS  Google Scholar 

  6. D. A. Z. Wevera, F. Picchionia, and A. A. Broekhuis, Prog. Polym. Sci. 36, 1558 (2011).

    Article  Google Scholar 

  7. C. Kierulf and I. W. Sutherland, Carbohydr. Polym. 9, 185 (1988).

    Article  CAS  Google Scholar 

  8. F. Lambert and M. Rinaudo, Polymer 26, 1549 (1985).

    Article  CAS  Google Scholar 

  9. R. S. Seright and B. J. Henrici, SPE Reservoir Eng. 1, 52 (1990).

    Article  Google Scholar 

  10. S. L. Wellington, Soc. Pet. Eng. J. 23, 901 (1983).

    Article  CAS  Google Scholar 

  11. S. G. Ash, A. J. Clarke-Sturman, and R. Calvert, SPE Annu. Tech. Conf. 12085, 1 (1983).

    Google Scholar 

  12. R. S. Seright, M. Seheult, and T. Talashek, SPE Reservoir Eval. Eng. 12, 783 (2009).

    Article  CAS  Google Scholar 

  13. C. S. Chen and H. E. W. Sheppard, Polym. Eng. Sci. 20, 512 (1980).

    Article  CAS  Google Scholar 

  14. I. W. Sutherland, J. Appl. Bacteriol. 53, 385 (1982).

    Article  CAS  Google Scholar 

  15. M. C. Cadmus, L. K. Jackson, K. A. Burton, R. D. Plattner, and M. E. Slodki, Appl. Environ. Microbiol. 44, 5 (1982).

    CAS  Google Scholar 

  16. J. R. Bragg, S. D. Maruca, W. W. Gale, L. S. Gall, W. C. Wernau, D. Beck, I. M. Goldman, A. I. Laskin, and L. A. Naslund, SPE Annu. Tech. Conf. 11989, 1 (1983).

    Google Scholar 

  17. C. T. Hou, N. Barnabe, and K. Greaney, J. Ind. Microbiol. 1, 31 (1986).

    Article  CAS  Google Scholar 

  18. J. Higiro, T. J. A. Herald, and S. S. Bean, Food Res. Int. 40, 435 (2007).

    Article  CAS  Google Scholar 

  19. H. C. Lee and D. A. Brant, Macromolecules 35, 2223 (2002).

    Article  CAS  Google Scholar 

  20. J. G. Westra, Macromolecules 22, 367 (1989).

    Article  CAS  Google Scholar 

  21. Y. S. Son, S. W. Park, D. W. Park, and J. W. Lee, Korea-Aust. Rheol. J. 21, 109 (2009).

    Google Scholar 

  22. P. J. Whitcomb and C. W. Macosko, J. Rheol. (N. Y.) 22, 493 (1978).

    Article  CAS  Google Scholar 

  23. H. F. Xia, J. R. Zhang, and S. Y. Liu, J. Daqing Pet. Inst. 35, 37 (2011).

    CAS  Google Scholar 

  24. L. J. Zhang and X. A. Yue, J. Centr. South. Univ. Technol. 15, 84 (2008).

    Article  CAS  Google Scholar 

  25. L. J. Zhang, X. A. Yue, and F. Guo, Pet. Sci. 5, 56 (2008).

    Article  Google Scholar 

  26. Q. H. Wu and J. A. Wu, Macromolecular Materials Rheology (Higher Education, Beijing, 2010).

    Google Scholar 

  27. W. Wang, J. Jianghan Pet. Inst. 16, 54 (1994).

    Google Scholar 

  28. M. Ranjbar, J. Rupp, G. Pusch, and R. Meyn, in Proceedings of SPE/DOE 8 Symposium of Enhanced Oil Recovery, Tulsa, Oklahoma, 1992, Vol. 24154, p. 22.

  29. Z. Zhang, J. Li, and J. Zhou, Transport Por. Media 86, 199 (2011).

    Article  Google Scholar 

  30. F. G. Ochoa, V. E. Santos, J. A. Casas, and E. Gomez, Biotechnol. Adv. 18, 549 (2000).

    Article  Google Scholar 

  31. V. A. Ivanov, L. I. Klushin, and A. M. Skvortsov, Polym. Sci., Ser. A 54, 602 (2012).

    Article  CAS  Google Scholar 

  32. A. M. Atta, M. Akel, R. A. Elghazawy, and M. Alaa, Polym. Sci., Ser. A 55, 327 (2013).

    Article  CAS  Google Scholar 

  33. W. N. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior (Springer, Berlin, 1989).

    Book  Google Scholar 

  34. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

    Google Scholar 

  35. A. Y. Malkin, Rheol. Acta 29, 512 (1990).

    Article  CAS  Google Scholar 

  36. V. Kontogiorgos, Polym. Test. 29, 1021 (2010).

    Article  CAS  Google Scholar 

  37. V. Kontogiorgos, Biopolymers 28, 25 (2010).

    Google Scholar 

  38. M. Wendlandt, NLCSmoothReg. http://www.math-works.com/matlabcentral/fileexchange/77122005.

  39. P.-C. Hansen, Regtools. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do1/4objectId1/452&objectType1/4file 2002.

  40. V. V. Kuznetsov and A. Y. Malkin, Rheol. Acta 39, 379 (2000).

    Article  Google Scholar 

  41. A. Y. Malkin, Polym. Sci., Ser. A 51, 80 (2009).

    Article  Google Scholar 

  42. A. Y. Malkin and I. J. Masalova, Non-Newtonian Fluid Mech. 147, 65 (2007).

    Article  CAS  Google Scholar 

  43. I. Masalova and A. Y. Malkin, Colloid J. 69, 185 (2007).

    Article  CAS  Google Scholar 

  44. G. G. Bellido and D. W. J. Hatcher, Food Eng. 93, 460 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, R., Liu, K. et al. Rheological behaviors and molecular motions of semi-diluted Xanthan solutions under shear: Experimental studies. Polym. Sci. Ser. A 56, 687–696 (2014). https://doi.org/10.1134/S0965545X14050071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14050071

Keywords

Navigation