Skip to main content
Log in

Rheology of concentrated xanthan gum solutions: Steady shear flow behavior

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mixability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Margaritis and J. E. Zajic,Biotechnol. Bioeng.,20, 939 (1978).

    Article  CAS  Google Scholar 

  2. K. S. Kang and D. J. Pettit in “Industrial Gums”, 3rd ed. (R. L. Whistler and J. N. Be Miller Eds), pp.341–398, Academic Press, New York, USA, 1993.

    Google Scholar 

  3. H. Schott, “Remington’s Pharmaceutical Sciences”, 18th ed., p.1308, Mack Publishing, Easton, PA, USA, 1990.

    Google Scholar 

  4. F. Garcia-Ochoa, V. E. Santos, J. A. Casas, and E. Gomez,Biotechnol. Adv.,18, 549 (2000).

    Article  CAS  Google Scholar 

  5. G. Gallino, M. Migliori, and B. de Cindio,Rheol. Acta,40, 196 (2001).

    Article  CAS  Google Scholar 

  6. E. Pelletier, C. Viebke, J. Meadows, and P. A. Williams,Biopolymers,59, 339 (2001).

    Article  CAS  Google Scholar 

  7. J. Moreno, M. A. Vargas, J. M. Madiedo, J. Munoz, J. Rivas, and M. G. Guerrero,Biotechnol. Bioeng.,67, 283 (2000).

    Article  CAS  Google Scholar 

  8. F. Garcia-Ochoa, V. E. Santos, and A. Alcon,Chem. Biochem. Eng. J.,11, 69 (1997).

    CAS  Google Scholar 

  9. J. A. Casas, V. E. Santos, and F. Garcia-Ochoa,Enzyme Microbial Technol.,26, 282 (2000).

    Article  CAS  Google Scholar 

  10. F. Garcia-Ochoa and E. Gomez,Biochem. Eng. J.,1, 1 (1998).

    Article  CAS  Google Scholar 

  11. P. J. Whitcomb and C. W. Macosko,J. Rheol.,22, 493 (1978).

    Article  CAS  Google Scholar 

  12. G. B. Thurston,J. Non-Newt. Fluid Mech.,9, 57 (1981).

    Article  CAS  Google Scholar 

  13. G. B. Thurston and G. A. Pope,J. Non-Newt. Fluid Mech.,9, 69 (1981).

    Article  CAS  Google Scholar 

  14. S. B. ross-Murphy, V. J. Morris, and E. R. Morris,Faraday Symp. Chem. Soc.,18, 115 (1983).

    Article  Google Scholar 

  15. R. K. Richardson and S. B. Ross-Murphy,Intern. J. Biol. Macromol.,9, 257 (1987).

    Article  CAS  Google Scholar 

  16. G. Cuvelier and B. Launay,Carbohydr. Polym.,6, 321 (1986).

    Article  CAS  Google Scholar 

  17. W. E. Rochefort and S. Middleman,J. Rheol.,31, 337 (1987).

    Article  CAS  Google Scholar 

  18. K. C. Tam and C. Tiu,J. Rheol.,33, 257 (1989).

    Article  CAS  Google Scholar 

  19. K. C. Tam and C. Tiu,J. Non-Newt. Fluid Mech.,46, 275 (1993).

    Article  CAS  Google Scholar 

  20. A. K. Podolsak, C. Tiu, T. Saeki, and H. Usui,Polym. Intern.,40, 155 (1996).

    Article  CAS  Google Scholar 

  21. A. Giboreau, G. Cuvelier, and B. Launay,J. Texture Studies,25, 119 (1994).

    Article  Google Scholar 

  22. T. Yoshida, M. Takahashi, T. Hatakeyama, and H. Hatakeyama,Polymer,39, 1119 (1998).

    Article  CAS  Google Scholar 

  23. J. Fujiwara, T. Iwanami, M. Takahashi, R. Tanaka, T. Hatakeyama, and H. Hatakeyama,Thermochimica Acta,352/353, 241 (2000).

    Article  Google Scholar 

  24. T. Iseki, M. Takahashi, H. Hattori, T. Hatakeyama, and H. Hatakeyama,Food Hydrocolloids,15, 503 (2001).

    Article  CAS  Google Scholar 

  25. B. Urlacher and O. Noble in “Thickening and Gelling Agents for Food: Xanthan Gums”, (A. Imeson Eds.), pp.284–312, Blackie Academic & Professional, London, UK, 1997.

    Google Scholar 

  26. M. Marcotte, A. R. Taherian-Hoshahili, and H. S. Ramaswamy,Food Res. Intern.,34, 695 (2001).

    Article  CAS  Google Scholar 

  27. T. Ahmed and H. S. Ramaswamy,Food Hydrocolloids,18, 367 (2004).

    Article  CAS  Google Scholar 

  28. R. Lapasin and S. Pricl, “Rheology of Industrial Polysaccharides: Theory and Applications”, Aspen Publishers, Gaithersburg, MD, USA, 1999.

    Google Scholar 

  29. B. T. Stokke, B. E. Christensen, and O. Smidsrod in “Polysaccharides: Structural Diversity and Functional Versatility — Macromolecular Properties of Xanthan”, (S. Dumitriu Eds.), pp.433–472, Marcel Dekker, New York, USA, 1998.

    Google Scholar 

  30. R. Moorhouse, M. D. Walkinshaw, and S. Arnott,Amer. Chem. Soc. Symp. Ser.,45, 90 (1977).

    CAS  Google Scholar 

  31. G. Holzwarth and E. B. Prestridge,Science,197, 757 (1977).

    Article  CAS  Google Scholar 

  32. T. A. Camesano and K. J. Wilkinson,Biomacromolecules,2, 1184 (2001).

    Article  CAS  Google Scholar 

  33. K. Ogawa and T. Yui in “Polysaccharides: Structural Diversity and Functional Versatility-X-ray Diffraction Study of Polysaccharides”, (S. Dumitriu Eds.), pp.101–130, Marcel Dekker, New York, USA, 1998.

    Google Scholar 

  34. K. Born, V. Langendorff, and P. Boulenguer, “Biopolymers”, Vol. 5, pp.259–291, Wiley-Interscience, New York, USA, 2001.

    Google Scholar 

  35. B. Katzbauer,Polym. Degrad. Stability,59, 81 (1998).

    Article  CAS  Google Scholar 

  36. M. A. Zirnsak, D. V. Boger, and V. Tirtaatmadja,J. Rheol.,43, 627 (1999).

    Article  CAS  Google Scholar 

  37. G. S. Chang, J. S. Koo, and K. W. Song,Korea-Australia Rheol. J.,15, 55 (2003).

    Google Scholar 

  38. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee,J. Korean Pharm. Sci.,29, 193 (1999).

    CAS  Google Scholar 

  39. G. Harrison, G. V. Franks, V. Tirtaatmadja, and D. V. Boger,Korea-Australia Rheol. J.,11, 197 (1999).

    Google Scholar 

  40. T. Moschakis, B. S. Murray, and E. Dickinson,J. Colloid Interf. Sci.,284, 714 (2005).

    Article  CAS  Google Scholar 

  41. H. A. Barnes and K. Walters,Rheol. Acta,24, 323 (1985).

    Article  CAS  Google Scholar 

  42. J. P. Hartnett and R. Y. Z. Hu,J. Rheol.,33, 671 (1989).

    Article  CAS  Google Scholar 

  43. G. Astarita,J. Rheol.,34, 275 (1990).

    Article  Google Scholar 

  44. I. D. Evans,J. Rheol.,36, 1313 (1992).

    Article  Google Scholar 

  45. G. Astarita,J. Rheol.,36, 1317 (1992).

    Google Scholar 

  46. J. Schurz,J. Rheol.,36, 1319 (1992).

    Article  Google Scholar 

  47. H. A. Barnes,J. Non-Newt. Fluid Mech.,81, 133 (1999).

    Article  CAS  Google Scholar 

  48. C. Balan,Appl. Rheol.,9, 58 (1999).

    CAS  Google Scholar 

  49. H. A. Barnes,Appl. Rheol.,9, 262 (1999).

    CAS  Google Scholar 

  50. D. Hadjistamov,Appl. Rheol.,13, 209 (2003).

    CAS  Google Scholar 

  51. Q. D. Nguyen and D. V. Boger,Ann. Rev. Fluid Mech.,24, 47 (1992).

    Article  Google Scholar 

  52. P. V. Liddel and D. V. Boger,J. Non-Newt. Fluid Mech.,63, 235 (1996).

    Article  Google Scholar 

  53. M. A. Rao and J. F. Steffe,Food Technol.,51, 50 (1997).

    Google Scholar 

  54. C. W. Pernell, E. A. Foegeding, and C. R. Daubert,J. Food Sci.,65, 110 (2000).

    Article  CAS  Google Scholar 

  55. P. H. Huh, G. S. Chang, J. O. Lee, K. W. Song, and C. H. Lee,Theor. Appl. Rheol.,4, 45 (2000).

    Google Scholar 

  56. H. A. Barnes and Q. D. Nguyen,J. Non-Newt. Fluid Mech.,98, 1 (2001).

    Article  CAS  Google Scholar 

  57. G. P. Roberts, H. A. Barnes, and C. Carew,Chem. Eng. Sci.,56, 5617 (2001).

    Article  CAS  Google Scholar 

  58. P. O. Brunn and H. Asoud,Rheol. Acta,41, 524 (2002).

    Article  CAS  Google Scholar 

  59. J. R. Stokes and J. H. Telford,J. Non-Newt. Fluid Mech.,124, 137 (2004).

    Article  CAS  Google Scholar 

  60. P. H. T. Uhlherr, J. Guo, C. Tiu, X. M. Zhang, J. Z. Q. Zhou, and T. N. Fang,J. Non-Newt. Fluid Mech.,125, 101 (2005).

    Article  CAS  Google Scholar 

  61. E. C. Bingham, “Fluidity and Plasticity”, pp.215–218, McGraw-Hill, New York, USA, 1922.

    Google Scholar 

  62. N. Casson in “Rheology of Disperse Systems” (C. C. Mill Eds.), p.84, Pergamon Press, London, UK, 1959.

    Google Scholar 

  63. W. H. Herschel and R. Bulkley,Kolloid Zeit.,39, 291 (1926).

    Article  Google Scholar 

  64. S. Mizrahi and Z. Berk,J. Texture Studies,3, 69 (1972).

    Article  Google Scholar 

  65. W. Heinz,Material Prüfung,1, 311 (1959).

    Google Scholar 

  66. J. A. Garcia-Ochoa and J. A. Casas,Chem. Eng. J.,53, B41 (1994).

    Google Scholar 

  67. K. W. Song and G. S. Chang,Korean J. Rheol.,11, 143 (1999).

    Google Scholar 

  68. P. J. Carreau, D. C. R. De Kee, and R. P. Chhabra, “Rheology of Polymeric Systems: Principles and Applications”, pp.84–102, Hanser/Gardner Publications, Cincinnati, OH, USA, 1997.

    Google Scholar 

  69. M. E. Ortiz, D. C. R. De Kee, and P. J. Careau,J. Rheol.,38, 519 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Won Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, KW., Kim, YS. & Chang, GS. Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. Fibers Polym 7, 129–138 (2006). https://doi.org/10.1007/BF02908257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908257

Keywords

Navigation