Skip to main content
Log in

Nonlinear material functions under medium amplitude oscillatory shear (MAOS) flow

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Dynamic oscillatory shear flow has been widely used to investigate viscoelastic material functions. In particular, small amplitude oscillatory shear (SAOS) tests have become the canonical method for characterizing the linear viscoelastic properties of complex fluids based on strong theoretical background and plenty of experimental results. Recently, there has been increasing interest in the use of large amplitude oscillatory shear (LAOS) tests for the characterization of complex fluids. However, it is difficult to define material functions in LAOS regime due to an infinite number of higher harmonic contributions. For this reason, many recent studies have focused on intrinsic nonlinearities obtained in medium amplitude oscillatory shear (MAOS) regime, which is a subdivision of the full LAOS regime. In this study, we reviewed recent experimental and theoretical results of nonlinear material functions in the MAOS regime, which contain four MAOS moduli (two first-harmonic moduli and two third-harmonic moduli) from Fourier and power series of shear stress, and a nonlinear material function Q0 and its elastic and viscous parts from Fourier-transform rheology (FT rheology). Furthermore, to identify linear-to-nonlinear transitions in stress response of model polystyrene (PS) solutions, we presented Pipkin diagrams in frequency ranges from the rubbery plateau region to the terminal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, M., N.G. Ebrahimi, and M. Wilhelm, 2013, Investigation of the rheological behavior of industrial tubular and autoclave LDPEs under SAOS, LAOS, transient shear, and elongational flows compared with predictions from the MSF theory, J. Rheol.57, 1693–1714.

    Article  CAS  Google Scholar 

  • Astarita, G. and R.J.J. Jongschaap, 1978, The maximum amplitude of strain for the validity of linear viscoelasticity, J. Non-Newton. Fluid Mech.3, 281–287.

    Article  Google Scholar 

  • Bae, J.E. and K.S. Cho, 2017, Analytical studies on the LAOS behaviors of some popularly used viscoelastic constitutive equations with a new insight on stress decomposition of normal stresses, Phys. Fluids29, 093103.

    Article  CAS  Google Scholar 

  • Bharadwaj, N.A. and R.H. Ewoldt, 2014, The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear, J. Rheol.58, 891–910.

    Article  CAS  Google Scholar 

  • Bharadwaj, N.A. and R.H. Ewoldt, 2015, Constitutive model fingerprints in medium-amplitude oscillatory shear, J. Rheol.59, 557–592.

    Article  CAS  Google Scholar 

  • Bharadwaj, N.A., K.S. Schweizer, and R.H. Ewoldt, 2017, A strain stiffening theory for transient polymer networks under asymptotically nonlinear oscillatory shear, J. Rheol.61, 643–665.

    Article  CAS  Google Scholar 

  • Bird, R.B., A.J. Giacomin, A.M. Schmalzer, and C. Aumnate, 2014, Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response, J. Chem. Phys.140, 074904.

    Article  CAS  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of polymeric liquids. Vol. 1: Fluid Mechanics, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  • Bozorgi, Y. and P.T. Underhill, 2014, Large-amplitude oscillatory shear rheology of dilute active suspensions, Rheol. Acta53, 899–909.

    Article  CAS  Google Scholar 

  • Chang, G.S., H.J. Ahn, and K.W. Song, 2015, A simple analysis method to predict the large amplitude oscillatory shear (LAOS) flow behavior of viscoelastic polymer liquids, Text. Sci. Eng.52, 159–166.

    Article  CAS  Google Scholar 

  • Chang, G.S., H.J. Ahn, and K.W. Song, 2016, Discrete Fourier transform analysis to characterize the large amplitude oscillatory shear (LAOS) flow behavior of viscoelastic polymer liquids, Text. Sci. Eng.53, 317–327.

    Article  Google Scholar 

  • Cho, K.S., K. Hyun, K.H. Ahn, and S.J. Lee, 2005, A geometrical interpretation of large amplitude oscillatory shear response, J. Rheol.49, 747–758.

    Article  CAS  Google Scholar 

  • Cho, K.S., K.W. Song, and G.S. Chang, 2010, Scaling relations in nonlinear viscoelastic behavior of aqueous PEO solutions under large amplitude oscillatory shear flow, J. Rheol.54, 27–63.

    Article  CAS  Google Scholar 

  • Costanzo, S., Q. Huang, G. Ianniruberto, G. Marrucci, O. Hassager, and D. Vlassopoulos, 2016, Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements, Macromolecules49, 3925–3935.

    Article  CAS  Google Scholar 

  • Cziep, M.A., M. Abbasi, M. Heck, L. Arens, and M. Wilhelm, 2016, Effect of molecular weight, polydispersity, and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity 3Q 0(ω) in MAOS, Macromolecules49, 3566–3579.

    Article  CAS  Google Scholar 

  • Davis, W.M. and C.W. Macosko, 1978, Nonlinear dynamic mechanical moduli for polycarbonate and PMMA, J. Rheol.22, 53–71.

    Article  CAS  Google Scholar 

  • Ewoldt, R.H. and N.A. Bharadwaj, 2013, Low-dimensional intrinsic material functions for nonlinear viscoelasticity, Rheol. Acta52, 201–219.

    Article  CAS  Google Scholar 

  • Ewoldt, R.H., A. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol.52, 1427–1458.

    Article  CAS  Google Scholar 

  • Fan, X.J. and R.B. Bird, 1984, A kinetic theory for polymer melts VI. Calculation of additional material functions, J. Non-Newton. Fluid Mech.15, 341–373.

    Article  CAS  Google Scholar 

  • Ferry, J.D., 1980, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, New York.

    Google Scholar 

  • Giacomin, A.J. and J.M. Dealy, 1993, Large-amplitude oscillatory shear, In: Collyer, A.A., eds., Techniques in Rheological Measurement, Chapman & Hall, Dordrecht, 99–121.

    Chapter  Google Scholar 

  • Giacomin, A.J., R.B. Bird, L.M. Johnson, and A.W. Mix, 2011, Large-amplitude oscillatory shear flow from the corotational Maxwell model, J. Non-Newton. Fluid Mech.166, 1081–1099.

    Article  CAS  Google Scholar 

  • Giacomin, A.J., R.S. Jeyaseelan, T. Samurkas, and J.M. Dealy, 1993, Validity of separable BKZ model for large amplitude oscillatory shear, J. Rheol.37, 811–826.

    Article  CAS  Google Scholar 

  • Gilbert, P.H. and A.J. Giacomin, 2016, Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response, Phys. Fluids28, 103101.

    Article  CAS  Google Scholar 

  • Gross, L.H. and B. Maxwell, 1972, The limit of linear viscoelastic response in polymer melts as measured in the maxwell orthogonal rheometer, Trans. Soc. Rheol.16, 577–601.

    Article  CAS  Google Scholar 

  • Gurnon, A.K. and N.J. Wagner, 2012, Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles, J. Rheol.56, 333–351.

    Article  CAS  Google Scholar 

  • Helfand, E. and D.S. Pearson, 1982, Calculation of the nonlinear stress of polymers in oscillatory shear fields, J. Polym. Sci. Pt. B-Polym. Phys.20, 1249–1258.

    Article  CAS  Google Scholar 

  • Hershey, C. and K. Jayaraman, 2019, Dynamics of entangled polymer chains with nanoparticle attachment under large amplitude oscillatory shear, J. Polym. Sci. Pt. B-Polym. Phys.57, 62–76.

    Article  CAS  Google Scholar 

  • Hoyle, D.M., D. Auhl, O.G. Harlen, V.C. Barroso, M. Wilhelm, and T.C.B. McLeish, 2014, Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts, J. Rheol.58, 969–997.

    Article  CAS  Google Scholar 

  • Hyun, K. and M. Wilhelm, 2009, Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems, Macromolecules42, 411–422.

    Article  CAS  Google Scholar 

  • Hyun, K. and M. Wilhelm, 2018, Nonlinear oscillatory shear mechanical responses, In: Richert, R., eds., Nonlinear Dielectric Spectroscopy, Springer International Publishing, Cham, 321–368.

    Chapter  Google Scholar 

  • Hyun, K., E.S. Baik, K.H. Ahn, S.J. Lee, M. Sugimoto, and K. Koyama, 2007, Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts, J. Rheol.51, 1319–1342.

    Article  CAS  Google Scholar 

  • Hyun, K., H.T. Lim, and K.H. Ahn, 2012, Nonlinear response of polypropylene (PP)/clay nanocomposites under dynamic oscillatory shear flow, Korea-Aust. Rheol. J.24, 113–120.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci.36, 1697–1753.

    Article  CAS  Google Scholar 

  • Hyun, K., S.H. Kim, K.H. Ahn, and S.J. Lee, 2002, Large amplitude oscillatory shear as a way to classify the complex fluids, J. Non-Newton. Fluid Mech.107, 51–65.

    Article  CAS  Google Scholar 

  • Jongschaap, R.J.J., K.H. Knapper, and J.S. Lopulissa, 1978, On the limit of linear viscoelastic response in the flow between eccentric rotating disks, Polym. Eng. Sci.18, 788–792.

    Article  CAS  Google Scholar 

  • Kempf, M., D. Ahirwal, M. Cziep, and M. Wilhelm, 2013, Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching, Macromolecules46, 4978–4994.

    Article  CAS  Google Scholar 

  • Kirkwood, J.G. and R.J. Plock, 1956, Non-Newtonian viscoelastic properties of rod-like macromolecules in solution, J. Chem. Phys.24, 665–669.

    Article  CAS  Google Scholar 

  • Kumar, M.A., R.H. Ewoldt, and C.F. Zukoski, 2016, Intrinsic nonlinearities in the mechanics of hard sphere suspensions, Soft Matter12, 7655–7662.

    Article  CAS  Google Scholar 

  • Larson, R.G., 1988, Constitutive Equations for Polymer Melts and Solutions, Butterworth-Heinemann, Boston.

    Google Scholar 

  • Likhtman, A.E. and T.C.B. McLeish, 2002, Quantitative theory for linear dynamics of linear entangled polymers, Macromolecules35, 6332–6343.

    Article  CAS  Google Scholar 

  • Lim, H.T., K.H. Ahn, J.S. Hong, and K. Hyun, 2013, Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow, J. Rheol.57, 767–789.

    Article  CAS  Google Scholar 

  • Martinetti, L. and R.H. Ewoldt, 2019, Time-strain separability in medium-amplitude oscillatory shear, Phys. Fluids31, 021213.

    Article  CAS  Google Scholar 

  • Martinetti, L., O. Carey-De La Torre, K.S. Schweizer, and R.H. Ewoldt, 2018, Inferring the nonlinear mechanisms of a reversible network, Macromolecules51, 8772–8789.

    Article  CAS  Google Scholar 

  • Merger, D., M. Abbasi, J. Merger, A.J. Giacomin, C. Saengow, and M. Wilhelm, 2016, Simple scalar model and analysis for large amplitude oscillatory shear, Appl. Rheol.26, 53809.

    Google Scholar 

  • Nie, Z., W. Yu, and C. Zhou, 2016, Nonlinear rheological behavior of multiblock copolymers under large amplitude oscillatory shear, J. Rheol.60, 1161–1179.

    Article  CAS  Google Scholar 

  • Onogi, S., T. Masuda, and K. Kitagawa, 1970, Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distribution polystyrenes, Macromolecules3, 109–116.

    Article  CAS  Google Scholar 

  • Paul, E. and R.M. Mazo, 1969, Hydrodynamic properties of a plane-polygonal polymer, according to Kirkwood-Riseman theory, J. Chem. Phys.51, 1102–1107.

    Article  CAS  Google Scholar 

  • Paul, E., 1969, Non-Newtonian viscoelastic properties of rodlike molecules in solution: Comment on a paper by Kirkwood and Plock, J. Chem. Phys.51, 1271–1272.

    Article  CAS  Google Scholar 

  • Pearson, D.S. and W.E. Rochefort, 1982, Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields, J. Polym. Sci. Pt. B-Polym. Phys.20, 83–98.

    Article  CAS  Google Scholar 

  • Pipkin, A.C., 1986, Slow viscoelastic flow, In: Pipkin, A.C., eds., Lectures on Viscoelasticity Theory, Springer, New York, 131–156.

    Chapter  Google Scholar 

  • Poungthong, P., A.J. Giacomin, C. Saengow, and C. Kolitawong, 2019, Exact solution for intrinsic nonlinearity in oscillatory shear from the corotational Maxwell fluid, J. Non-Newton. Fluid Mech.265, 53–65.

    Article  CAS  Google Scholar 

  • Poungthong, P., C. Saengow, A.J. Giacomin, and C. Kolitawong, 2018, Power series for shear stress of polymeric liquid in largeamplitude oscillatory shear flow, Korea-Aust. Rheol. J.30, 169–178.

    Article  Google Scholar 

  • Saengow, C. and A.J. Giacomin, 2018, Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework, Phys. Fluids30, 030703.

    Article  CAS  Google Scholar 

  • Saengow, C., A.J. Giacomin, and C. Kolitawong, 2017, Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress, Phys. Fluids29, 043101.

    Article  CAS  Google Scholar 

  • Salehiyan, R., H.Y. Song, M. Kim, W.J. Choi, and K. Hyun, 2016, Morphological evaluation of PP/PS blends filled with different types of clays by nonlinear rheological analysis, Macromolecules49, 3148–3160.

    Article  CAS  Google Scholar 

  • Salehiyan, R., H.Y. Song, W.J. Choi, and K. Hyun, 2015, Characterization of effects of silica nanoparticles on (80/20) PP/PS blends via nonlinear rheological properties from Fourier transform rheology, Macromolecules48, 4669–4679.

    Article  CAS  Google Scholar 

  • Shahid, T., Q. Huang, F. Oosterlinck, C. Clasen, and E. van Ruymbeke, 2017, Dynamic dilution exponent in monodisperse entangled polymer solutions, Soft Matter13, 269–282.

    Article  CAS  Google Scholar 

  • Song, H.Y. and K. Hyun, 2018, Decomposition of Q 0 from FTrheology into elastic and viscous parts: Intrinsic-nonlinear master curves for polymer solutions, J. Rheol.62, 919–939.

    Article  CAS  Google Scholar 

  • Song, H.Y. and K. Hyun, 2019, First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS), Korea-Aust. Rheol. J.31, 1–13.

    Article  Google Scholar 

  • Song, H.Y., O.S. Nnyigide, R. Salehiyan, and K. Hyun, 2016, Investigation of nonlinear rheological behavior of linear and 3-arm star 1,4-cis-polyisoprene (PI) under medium amplitude oscillatory shear (MAOS) flow via FT-rheology, Polymer104, 268–278.

    Article  CAS  Google Scholar 

  • Song, H.Y., S.J. Park, and K. Hyun, 2017a, Characterization of dilution effect of semidilute polymer solution on intrinsic nonlinearity Q 0 via FT rheology, Macromolecules50, 6238–6254.

    Article  CAS  Google Scholar 

  • Song, H.Y., R. Salehiyan, X. Li, S.H. Lee, and K. Hyun, 2017b, A comparative study of the effects of cone-plate and parallelplate geometries on rheological properties under oscillatory shear flow, Korea-Aust. Rheol. J.29, 281–294.

    Article  Google Scholar 

  • Wagner, M.H., V.H. Rolón-Garrido, K. Hyun, and M. Wilhelm, 2011, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers, J. Rheol.55, 495–516.

    Article  CAS  Google Scholar 

  • Wilhelm, M., 2002, Fourier-transform rheology, Macromol. Mater. Eng.287, 83–105.

    Article  CAS  Google Scholar 

  • Wilhelm, M., K. Reinheimer, and J. Kübel, 2012, Optimizing the sensitivity of FT-rheology to quantify and differentiate for the first time the nonlinear mechanical response of dispersed beer foams of light and dark beer, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys.226, 547–567.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H.Y., Hyun, K. Nonlinear material functions under medium amplitude oscillatory shear (MAOS) flow. Korea-Aust. Rheol. J. 31, 267–284 (2019). https://doi.org/10.1007/s13367-019-0027-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0027-0

Keywords

Navigation