Skip to main content
Log in

Synthesis and characterization of hydroxyapatite-poly-(vinyl alcohol) based nanocomposites for their perspective use as bone substitutes

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The present work adds to the continuing efforts of designing a natural bone like structure. In these studies the hydroxyapatite (HA) impregnated polymeric composites of polyacrylamide (PAm) and poly-(vinyl alcohol) (PVA) have been synthesized by free radical polymerization for the purpose of studying their blood compatibility, water sorption behavior mechanical properties, and porosity. The prepared PAm-PVA-HA composites were characterized using techniques like fourier transform spectroscopy, X-ray diffraction studies, thermogravimetric analysis and scanning electron microscopy. The composites were also evaluated for mechanical properties like compressive strength and modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. X. F. Lam, X. M. Mo, S. H. Teoh, and D. W. Hutmacher, Mater. Sci. Eng. C 20, 49 (2002).

    Article  Google Scholar 

  2. W. Y. Yeong, C.K. Chua, K.F. Leong, and M. Chandrasekaran, Trends Biotechnol. 22, 643 (2004).

    Article  CAS  Google Scholar 

  3. L. Moroni, J. R. de Wijn, and C.A. Blitterswijk, Biomaterials 27, 974 (2006).

    Article  CAS  Google Scholar 

  4. R. Langer and J. P. Vacanti, Tissue engineering Science 260, 920 (1993).

    CAS  Google Scholar 

  5. A. J. Putnam and D. J. Mooney, Nat. Med. 2, 824 (1996).

    Article  CAS  Google Scholar 

  6. M. C. Wake, C. W. Patrick, and A. G. Mikos, Pore Cell Transplant 3, 339 (1994).

    CAS  Google Scholar 

  7. S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S.H. Hyon, and K. Jamshidi, Biomaterials 7, 183 (1986).

    Article  CAS  Google Scholar 

  8. M. Ito, Biomaterials 12, 41 (1991).

    Article  CAS  Google Scholar 

  9. J. Song, E. Saiz, and C. R. Bertozzi, J. Am. Chem. Soc. 125, 1236 (2003).

    Article  CAS  Google Scholar 

  10. Z. A. C. Schnepp, R. G. Mc Quire, and S. Mann, Adv. Mater. 18, 1869 (2006).

    Article  CAS  Google Scholar 

  11. C. R. Nuttelman, D. S. W. Benoit, M. C. Tripodi, and K. S. Anseth, Biomaterials 27, 1377 (2006).

    Article  CAS  Google Scholar 

  12. M. Huang, J. Q. Feng, J. X. Wang, X. D. Zhang, Y. B. Li, and Y. G. Yan, J. Mater. Sci. Mater. Med. 15, 655 (2003).

    Article  Google Scholar 

  13. G. R. Mahadaviniya and A. Pourjavadi, Polym. Adv. Technol. 15, 173 (2004).

    Article  Google Scholar 

  14. P. Bera and S. K. Saha, Polymer 39, 1461 (1998).

    Article  CAS  Google Scholar 

  15. F. Ilmain, T. Tanaka, and E. Kokufuta, Nature 349, 400 (1991).

    Article  CAS  Google Scholar 

  16. M. Takeda, T. Norisuye, and M. Shibayama, Macromolecules 33, 2909 (2000).

    Article  CAS  Google Scholar 

  17. S. Takata, T. Norisuye, and M. Shibayama, Macromolecules 32, 3989 (1999).

    Article  CAS  Google Scholar 

  18. A. K. Bajpai and M. Rajpoot, J. Appl. Polym. Sci. 81, 1238 (2001).

    Article  CAS  Google Scholar 

  19. T. Ishikawa, M. Wakamura, and S. Kondo, Am. Chem. Soc. 5, 140 (1989) (reprinted from Langmuir).

    CAS  Google Scholar 

  20. A. K. Bajpai and R. Sainy, J. Mater. Sci. Mater. Med. 17, 49 (2006).

    Article  CAS  Google Scholar 

  21. P. Spulveda, F. S. Ortega, M. D. M. Innocentini, V. C. Pandolfelli, and J. A. M. Ceram. Soc. 83, 3021 (2000).

    Google Scholar 

  22. Y. Zhang and M. Zhang, J. Biomed. Mater. Res. 55, 304 (2001).

    Article  CAS  Google Scholar 

  23. A. K. Bajpai and R. Sainy, Polym. Int. 54, 796 (2005).

    Article  CAS  Google Scholar 

  24. R. Saini and A. K. Bajpai, Polym. Int. 54, 1233 (2005).

    Article  Google Scholar 

  25. A. K. Bajpai and D. D. Mishra, J. Mater. Sci. Mater. Med. 15, 583 (2004).

    Article  CAS  Google Scholar 

  26. A. K. Bajpai and S. Kankane, J. Appl. Polym. Sci. 104, 1559 (2007).

    Article  CAS  Google Scholar 

  27. Y. Wang, X. Wang, K. Wei, J. Matlet. 61, 1071 (2007).

    CAS  Google Scholar 

  28. A. C. Tas, Biomaterials 21, 1429 (2000).

    Article  CAS  Google Scholar 

  29. L. Juan-Zhang, J. Matlet. 58, 719 (2004).

    Google Scholar 

  30. K. C. Blakeslee and R. A. Candrate, J. Am. Ceram. Soc. 54, 559 (1971).

    Article  CAS  Google Scholar 

  31. A. Pouravadi and R. G. Mahdavinia, Turk. J. Chem. 30, 595 (2006).

    Google Scholar 

  32. R. M. Silverstein, G. L. Bassler, and T. C. Morril, Spectrometric Identification of Organic Compounds (Wiley, New York, 1991).

    Google Scholar 

  33. M. N. Rahaman, Ceramics Processing and Sintering (Marcel Dekker, New York, 1995).

    Google Scholar 

  34. K. Prabhakaran, T.V. Thamaraiselvi, and S. Rajeshwari, Trends Biomater. Artif. Organs. 19, 84 (2006).

    Google Scholar 

  35. Y. Sang, S. Wen, and M. Li, in Mat. Res. Soc. Symp. Proc., Materials Research Society, 2002, p. 724.

  36. R. Murugan, S. Ramkrishna, and K. Panduranga, J. Matlet. 60, 2844 (2006).

    CAS  Google Scholar 

  37. G. Zheng, X. Jiu, and Z. Xiang, Biomed. Mater. Eng. 8, 75 (1998).

    Google Scholar 

  38. R. A. Magnussen, F. Guilak, and T. P. Vail, J. Orthop. Res. 23, 576 (2005).

    Article  Google Scholar 

  39. A. C. Tas, Key Engineering Materials 264, 2079 (2004).

    Article  Google Scholar 

  40. M. J. Yaszemski and R. G. Payne, Biomaterials 17, 171 (1996).

    Google Scholar 

  41. A. K. Bajpai and A. Mishra, Polym.Int. 54, 1347 (2005).

    Article  CAS  Google Scholar 

  42. A. K. Bajpai, J. Polym. Int. 56, 231 (2007).

    Article  CAS  Google Scholar 

  43. M. K. Narbat, M. S. Hashtjin, and M. Pazouki, Engineering Iranian J. Biotechnology 4, 54 (2006).

    CAS  Google Scholar 

  44. T. S. Pradeesh, M. C. Sunny, H. K. Varma, Bull. Mater. Sci. 28, 383 (2005).

    Article  CAS  Google Scholar 

  45. A. S. Hoffman, Am. Chem. Soc. 199, 3 (1982).

    CAS  Google Scholar 

  46. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine (Elsevier Academic Press, Amsterdam, 2004), pp. 332–338.

    Google Scholar 

  47. J. D. Andrade, S. Nagaoka, S. L. Cooper, T. Okano, and S. W. Kim, Trans. Am. Soc. Artif. Intern. Organs. 33, 75 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemlata Bundela.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundela, H., Bharadwaj, V. Synthesis and characterization of hydroxyapatite-poly-(vinyl alcohol) based nanocomposites for their perspective use as bone substitutes. Polym. Sci. Ser. A 54, 299–309 (2012). https://doi.org/10.1134/S0965545X12040013

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X12040013

Keywords

Navigation