Advertisement

Petroleum Chemistry

, Volume 56, Issue 11, pp 1085–1092 | Cite as

Cellulose composite membranes for nanofiltration of aprotic solvents

  • T. S. Anokhina
  • A. A. Yushkin
  • I. S. Makarov
  • V. Ya. Ignatenko
  • A. V. Kostyuk
  • S. V. Antonov
  • A. V. Volkov
Article

Abstract

Cellulose composite membranes have been fabricated by casting a cellulose solution in N-methylmorpholine oxide on a nonwoven polyester support. The membranes have been tested for nanofiltration of aprotic solvents. The solvent permeability has changed from 0.11 ± 0.02 to 2.5 ± 0.4 kg/(m2 h bar) in the following order: DMSO > NMP > DMFA > THF > acetone, which can be attributed to a decrease in viscosity of the fluids. The rejection of the anionic dyes Orange II (MW 350) and Remazol Brilliant Blue R (MW 626) has been found to range within 15–85% and 42–94%, respectively, on the solvent nature. Sorption experiments have revealed a noticeable difference between certain solvents in interaction with the membrane material: a lower degree of cellulose swelling in THF (37%) and a higher degree in DMSO (230%). In addition, it has been found that the rejection of solutes by the composite membranes correlates with the degree of cellulose swelling. A rejection of ≥90% has been achieved for Remazol Brilliant Blue R, which has the larger molecule, at a cellulose swelling ratio of 100% or higher. Thus, it has been concluded that polymer swelling leads to narrowing the porous structure of the cellulose layer of the composite membrane and, hence, improvement in separation parameters.

Keywords

cellulose N-methylmorpholine N-oxide composite membranes organic solvent nanofiltration aprotic solvents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Tsar’kov, A. A. Yushkin, and A. V. Volkov, Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013), p. 539 [in Russian].Google Scholar
  2. 2.
    V. V. Parashchuk and A. V. Volkov, Ser. Krit. Tekhnol.: Membr. 37 (1), (2008).Google Scholar
  3. 3.
    Y. H. See Toh, M. Silva, and A. G. Livingston, J. Membr. Sci. 324, 220 (2008).CrossRefGoogle Scholar
  4. 4.
    I. Soroko, M. P. Lopes, and A. G. Livingston, J. Membr. Sci. 381, 152 (2011).CrossRefGoogle Scholar
  5. 5.
    I. Soroko, M. Makowski, F. Spill, and A. G. Livingston, J. Membr. Sci. 381, 163 (2011).CrossRefGoogle Scholar
  6. 6.
    I. Soroko, M. Sairam, and A. G. Livingston, J. Membr. Sci. 381, 172 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. H. See Toh, F. W. Lim, and A. G. Livingston, J. Membr. Sci. 301, 3 (2007).CrossRefGoogle Scholar
  8. 8.
    K. Hendrix, G. Koeckelberghs, and I. F. J. Vankelecom, J. Membr. Sci. 452, 241 (2014).CrossRefGoogle Scholar
  9. 9.
    J. da Silva Burgal, L. G. Peeva, and A. Livingston, in Proceedings of the 10th International Congress on Membranes and Membrane Processes, 2014.Google Scholar
  10. 10.
    P. Vandezande, K. Vanherck, and I. F. J. Vankelecom, US Patent No. 2010 181 253 (2008).Google Scholar
  11. 11.
    K. Vanherck, A. Cano-Odena, G. Koeckelberghs, et al., J. Membr. Sci. 353, 135 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Siddique, Y. Bhole, L. G. Peeva, and A. G. Livingston, J. Membr. Sci. 465, 138 (2014).CrossRefGoogle Scholar
  13. 13.
    C. Linder, M. Nemas, M. Perry, and R. Ketraro, US Patent No. 5 032 282 (1991).Google Scholar
  14. 14.
    M. Sairam, X. X. Loh, Y. Bhole, et al., J. Membr. Sci. 349, 123 (2010).CrossRefGoogle Scholar
  15. 15.
    X. X. Loh, M. Sairam, A. Bismarck, et al., J. Membr. Sci. 326, 635 (2009).CrossRefGoogle Scholar
  16. 16.
    P. Vandezande, L. E. M. Gevers, and I. F. Vankelecom, J. Chem. Soc. Rev. 37, 365 (2008).CrossRefGoogle Scholar
  17. 17.
    X. Li, P. Vandezande, and I. F. J. Vankelecom, J. Membr. Sci. 320, 143 (2008).CrossRefGoogle Scholar
  18. 18.
    X. Li, M. Basko, F. du Prez, and I. F. J. Vankelecom, J. Phys. Chem. B 112, 16539.Google Scholar
  19. 19.
    A. Pinkert, K. N. Marsh, S. Pang, and M. P. Staiger, Chem. Rev. 109, 6712 (2009).CrossRefGoogle Scholar
  20. 20.
    A. A. Yushkin, T. S. Anokhina, and A. V. Volkov, Membr. Membr. Tekhnol. 5, 226 (2015).Google Scholar
  21. 21.
    T. S. Anokhina, A. A. Yushkin, V. V. Volkov, et al., Phys. Procedia 72, 171 (2015).CrossRefGoogle Scholar
  22. 22.
    T. Nishino, I. Matsuda, and K. Hirao, Macromolecules 37, 7683 (2004).CrossRefGoogle Scholar
  23. 23.
    S. L. Williamson, R. S. Armentrout, R. S. Porter, and C. L. McCormick, Macromolecules 31, 8134 (1998).CrossRefGoogle Scholar
  24. 24.
    K. J. Edgar, K. M. Arnold, W. W. Blount, J. E. Lawniczak, D. W. Lowman, Macromolecules 28, 4122 (1995).CrossRefGoogle Scholar
  25. 25.
    J. F. Masson and R. S. J. Manley, Macromolecules 24, 5914 (1991).CrossRefGoogle Scholar
  26. 26.
    J. F. Masson and R. S. J. Manley, Macromolecules 24, 6670 (1991).CrossRefGoogle Scholar
  27. 27.
    V. V. Vinogradov, O. P. Akaev, and L. N. Mizerovskii, Fibre Chem. 34, 167 (2002).CrossRefGoogle Scholar
  28. 28.
    L. N. Mizerovskii and V. V. Afanas’eva, Khim. Volokna, No. 5, 20 (2002).Google Scholar
  29. 29.
    Y. H. Bang, S. Lee, J. B. Park, and H. H. Cho, J. Appl. Polym. Sci. 73, 2681 (1999).CrossRefGoogle Scholar
  30. 30.
    A. Yoshihiko and M. Akira, J. Appl. Polym. Sci. 84, 2302 (2002).CrossRefGoogle Scholar
  31. 31.
    Z. Lewandowski, J. Appl. Polym. Sci. 83, 2762 (2002).CrossRefGoogle Scholar
  32. 32.
    H. J. Li, T. M. Cao, J. J. Qin, et al., J. Membr. Sci. 279, 328 (2006).CrossRefGoogle Scholar
  33. 33.
    Z. Mao, Y. Cao, X. Jie, et al., Sep. Purif. Technol. 72, 28 (2010).CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, H. Shao, and X. Hu, J. Appl. Polym. Sci. 86, 3389 (2002).CrossRefGoogle Scholar
  35. 35.
    L. K. Golova, V. V. Romanov, and O. B. Balashova, RU Patent No. 1 645 308 (1992).Google Scholar
  36. 36.
    L. K. Golova, Khim. Volokna, No. 1, 13 (1996).Google Scholar
  37. 37.
    L. K. Golova, V. G. Kulichikhin, and S. P. Papkov, Vysokomol. Soedin., Ser. A 28, 1795 (1986).Google Scholar
  38. 38.
    L. K. Golova, O. E. Borodina, L. K. Kuznetsova, T. A. Lyubova, T. B. Krylova, Khim. Volokna, No. 4, 14 (2000).Google Scholar
  39. 39.
    S. E. Tsar’kov, A. O. Malakhov, E. G. Litvinova, and A. V. Volkov, Pet. Chem. 53, 537 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. S. Anokhina
    • 1
  • A. A. Yushkin
    • 1
  • I. S. Makarov
    • 1
  • V. Ya. Ignatenko
    • 1
  • A. V. Kostyuk
    • 1
  • S. V. Antonov
    • 1
  • A. V. Volkov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations