Skip to main content
Log in

Extra-Optimal Methods for Solving Ill-Posed Problems: Survey of Theory and Examples

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new direction in methods for solving ill-posed problems, namely, the theory of regularizing algorithms with approximate solutions of extra-optimal quality is surveyed. A distinctive feature of these methods is that they are optimal not only in the order of accuracy of resulting approximate solutions, but also with respect to a user-specified quality functional. Such functionals can be specified, for example, as an a posteriori estimate of the quality (accuracy) of approximate solutions, a posteriori estimates of various linear functionals of these solutions, and estimates of their mathematical entropy and multidimensional variations of chosen types. The relationship between regularizing algorithms that are extra-optimal and optimal in the order of quality is studied. Issues concerning the practical derivation of a posteriori estimates for the quality of approximate solutions are addressed, and numerical algorithms for finding such estimates are described. The exposition is illustrated by results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. B. Bakushinsky and A. V. Goncharsky, Iterative Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Solving Ill-Posed Operator Equations with Smooth Operators (Editorial URSS, Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  3. G. M. Vainikko and A. Yu. Veretennikov, Iterative Procedures in Ill-Posed Problems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  4. F. P. Vasil’ev, Optimization Methods (Mosk. Tsentr Neprer. Mat. Obrazovan., Moscow, 2011), Vols. 1, 2 [in Russian].

    Google Scholar 

  5. V. V. Vasin and A. L. Ageev, Ill-Posed Problems with a Priori Information (Nauka, Yekaterinburg, 1993) [in Russian].

    MATH  Google Scholar 

  6. V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications (Nauka, Moscow, 1978; VSP, Utrecht, 2002).

  7. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, 1996).

    MATH  Google Scholar 

  8. S. I. Kabanikhin, A. D. Satybaev, and M. A. Shishlenin, Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems (VSP, Utrecht, 2004).

    MATH  Google Scholar 

  9. S. I. Kabanikhin, Inverse and Ill-Posed Problems (Sibirskoe Nauchnoe, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  10. Yu. M. Korolev and A. G. Yagola, “On inverse problems in partially ordered spaces with a priori information,” J. Inverse Ill-Posed Probl. 20 (4), 567–573 (2012).

    MathSciNet  MATH  Google Scholar 

  11. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986).

  12. A. S. Leonov, Solution of Ill-Posed Inverse Problems: Theory, Practical Algorithms, and Demonstrations in MATLAB (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

  13. O. A. Liskovets, Variational Methods for Solving Unstable Problems (Nauka i Tekhnika, Minsk, 1981) [in Russian].

    Google Scholar 

  14. V. A. Morozov, Regular Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  15. Yu. S. Osipov, F. P. Vasil’ev, and M. M. Potapov, The Basics of the Dynamic Regularization Method (Mosk. Gos. Univ., Moscow, 1999) [in Russian].

    Google Scholar 

  16. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics (Marcel Dekker, New York, 2000).

    MATH  Google Scholar 

  17. V. P. Tanana, Methods for Solving Operator Equations (Nauka, Moscow, 1981; VSP, Utrecht, 1997).

  18. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1979).

  19. A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Nauka, Moscow, 1990; Kluwer Academic, Dordrecht, 1995).

  20. A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (CRC, London, 1998; KURS, Moscow, 2017).

  21. A. G. Yagola, I. E. Stepanova, V. N. Titarenko, and Y. Wang, Inverse Problems and Methods for Their Solution: Applications to Geophysics (Binom, Moscow, 2014) [in Russian].

  22. A. S. Leonov, “On a posteriori accuracy estimates for solutions of linear ill-posed problems and extraoptimal regularizing algorithms,” Vychisl. Metody Program. 11 (1), 14–24 (2010).

    Google Scholar 

  23. A. S. Leonov, “Extraoptimal a posteriori estimates of the solution accuracy in the ill-posed problems of the continuation of potential geophysical fields,” Izv. Phys. Solid Earth 47 (6), 531–540 (2011).

    Google Scholar 

  24. A. S. Leonov, “A posteriori accuracy estimations of solutions to ill-posed inverse problems and extra-optimal regularizing algorithms for their solution,” Numer. Anal. Appl. 5 (1), 68−83 (2012).

    MATH  Google Scholar 

  25. A. S. Leonov, “Extra-optimal methods for solving ill-posed problems,” J. Inverse Ill-Posed Probl. 20 (5–6), 637–665 (2012).

    MathSciNet  MATH  Google Scholar 

  26. A. S. Leonov, “Locally extra-optimal regularizing algorithms,” J. Inverse Ill-Posed Probl. 22 (5), 713–737 (2014).

    MathSciNet  MATH  Google Scholar 

  27. A. S. Leonov, “Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions,” Comput. Math. Math. Phys. 56 (1), 1–13 (2016).

    MathSciNet  MATH  Google Scholar 

  28. A. S. Leonov, “Regularizing algorithms with optimal and extra-optimal quality,” Numer. Anal. Appl. 9 (4), 288–298 (2016).

    MathSciNet  MATH  Google Scholar 

  29. Yu. L. Gaponenko and V. A. Vinokurov, “A posteriori estimates for solutions of ill-posed inverse problems,” Dokl. Akad. Nauk SSSR 263 (2), 277–280 (1982).

    MathSciNet  MATH  Google Scholar 

  30. A. G. Yagola and K. Yu. Dorofeev, “Method for expanding compact sets of solutions of ill-posed problems under the source condition,” Vestn. Mosk. Univ. Ser. 3: Fiz. Astron., No. 2, 64–66 (1999).

  31. K. Yu. Dorofeev, V. N. Titarenko, and A. G. Yagola, “Algorithms for constructing a posteriori errors of solutions to ill-posed problems,” Comput. Math. Math. Phys. 43 (1), 10–23 (2003).

    MathSciNet  MATH  Google Scholar 

  32. A. G. Yagola, N. N. Nikolaeva, and V. N. Titarenko, “Error estimation for the solution of the Abel equation on sets of monotonic and convex functions,” Sib. Zh. Vychisl. Mat. 6 (2), 171–180 (2003).

    MATH  Google Scholar 

  33. V. N. Titarenko and A. G. Yagola, “The problems of linear and quadratic programming for ill-posed problems on some compact sets,” J. Inverse Ill-Posed Probl. 11 (3), 311–328 (2003).

    MathSciNet  MATH  Google Scholar 

  34. A. B. Bakushinsky, “A posteriori error estimates for approximate solutions of irregular operator equations,” Dokl. Math. 83 (2), 192−193 (2011).

    MathSciNet  MATH  Google Scholar 

  35. A. B. Bakushinsky, A. Smirnova, and Hui Liu, “A posteriori error analysis for unstable models,” J. Inverse Ill-Posed Probl. 20 (4), 411–428 (2012).

    MathSciNet  MATH  Google Scholar 

  36. A. S. Leonov, “A new algorithm for a posteriori error estimation for approximate solutions of linear ill-posed problems,” Comput. Math. Math. Phys. 59 (2), 193–200 (2019).

    MathSciNet  MATH  Google Scholar 

  37. A. S. Leonov, Y. Wang, and A. G. Yagola, “Piecewise uniform regularization for the inverse problem of microtomography with a-posteriori error estimate,” Inverse Probl. Sci. Eng. (2018). https://doi.org/10.1080/17415977.2018.1561676

  38. A. S. Leonov, “Methods for solving ill-posed extremum problems with optimal and extra-optimal properties,” Math. Notes 105 (3), 385–397 (2019).

    MathSciNet  MATH  Google Scholar 

  39. E. Giusti, Minimal Surfaces and Functions of Bounded Variation (Birkhäuser, Boston, 1984).

    MATH  Google Scholar 

  40. S. J. Wernecke and L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. 26, 351–364 (1977).

    MATH  Google Scholar 

  41. A. S. Leonov, “Pointwise extra-optimal regularizing algorithms,” Vychisl. Metody Program. 14, 215–228 (2013).

    Google Scholar 

  42. V. K. Ivanov and T. I. Korolyuk, “Error estimates for solutions of incorrectly posed linear problems,” Comput. Math. Math. Phys. 9 (1), 35–49 (1969).

    Google Scholar 

  43. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley New York, 1968).

    MATH  Google Scholar 

  44. E. Hille, Functional Analysis and Semigroups (Am. Math. Soc., Providence, R.I., 1949).

    Google Scholar 

  45. A. S. Leonov, “Numerical implementation of special regularizing algorithms for solving a class of ill-posed problems with sourcewise represented solutions,” Sib. Zh. Vychisl. Mat. 4 (3), 269–280 (2001).

    MATH  Google Scholar 

  46. A. S. Leonov, “Elimination of accuracy saturation in regularizing algorithms,” Numer. Anal. Appl. 1 (2), 135–150 (2008).

    Google Scholar 

  47. G. Chavent, Nonlinear Least Squares for Inverse Problems (Springer, New York, 2009).

    MATH  Google Scholar 

  48. A. S. Leonov and V. N. Sorokin, “Upper bound of errors in solving the inverse problem of identifying a voice source,” Acoust. Phys. 63 (5), 532–545 (2017).

    Google Scholar 

  49. A. S. Leonov, A. N. Sharov, and A. G. Yagola, “A posteriori error estimates for numerical solutions to inverse problems of elastography,” Inverse Probl. Sci. Eng. 25 (1), 114–128 (2017).

    MathSciNet  MATH  Google Scholar 

  50. A. S. Leonov, A. N. Sharov, and A. G. Yagola, “Solution of the inverse elastography problem for parametric classes of inclusions with a posteriori error estimate,” J. Inverse Ill-Posed Probl. 26 (4), 493–499 (2018).

    MathSciNet  MATH  Google Scholar 

  51. V. N. Sorokin and A. S. Leonov, “Multisource speech analysis for speaker recognition,” Pattern Recogn. Image Anal. 29 (1), 181–193 (2019).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 17-01-00159-a and 19-51-53005-GFEN-a) and by the Program of Competitiveness Enhancement for the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (contract no. 02.a03.21.0005 of August 27, 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Leonov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, A.S. Extra-Optimal Methods for Solving Ill-Posed Problems: Survey of Theory and Examples. Comput. Math. and Math. Phys. 60, 960–986 (2020). https://doi.org/10.1134/S0965542520060068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520060068

Keywords:

Navigation