Skip to main content
Log in

Methods for Solving Ill-Posed Extremum Problems with Optimal and Extra-Optimal Properties

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The notion of the quality of approximate solutions of ill-posed extremum problems is introduced and a posteriori estimates of quality are studied for various solution methods. Several examples of quality functionals which can be used to solve practical extremum problems are given. The new notions of the optimal, optimal-in-order, and extra-optimal qualities of a method for solving extremum problems are defined. A theory of stable methods for solving extremum problems (regularizing algorithms) of optimal-in-order and extra-optimal quality is developed; in particular, this theory studies the consistency property of a quality estimator. Examples of regularizing algorithms of extra-optimal quality for solving extremum problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1974; Wiley, New York, 1977).

    Google Scholar 

  2. A.N. Tikhonov, A.S. Leonov, and A.G. Yagola, Nonlinear Ill-Posed Problems (Nauka, Moscow, 1995; Chapman and Hall, London, 1998), Vols. 1 and 2.

    MATH  Google Scholar 

  3. V. A. Morozov, “Calculation of the lower bounds of functionals from approximate information,” Zh. Vychisl. Mat. i Mat. Fiz. 13 (4), 1045–1049 (1973) [U. S. S. R. Comput. Math. and Math. Phys. 13 (4), 275–281 (1973)].

    Google Scholar 

  4. A. N. Tikhonov and F. P. Vasil’ev, “Methods for solving ill-posed extremum problems,” in Mathematical Models and Numerical Methods, Banach Center Publ. (PWN, Warsaw, 1978), Vol. 3, pp. 297–342.

    Google Scholar 

  5. F. P. Vasil’ev, Methods for Solving Extremum Problems. Minimization Problems in function Spaces, Regularization, Approximation (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  6. O. A. Liskovets, Variational Methods for Solving Unstable Problems (Nauka i Tekhnika, Minsk, 1981) [in Russian].

    Google Scholar 

  7. A. S. Leonov, “On an application of the generalized discrepancy principle for the solution of ill-posed extremum problems,” Dokl. Akad. Nauk SSSR 262 (6), 1306–1310 (1982) [Soviet Math. Dokl. 25, 227–231 (1982)].

    MathSciNet  Google Scholar 

  8. M. Yu. Kokurin, “Source conditions and accuracy estimates in Tikhonov’s scheme of solving ill-posed nonconvex optimization problems,” J. Inverse Ill-Posed Probl. 26 (4), 463–475 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Yu. Kokurin, “Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov’s scheme for solving ill-posed optimization problems,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 6, 60–69 (2017) [Russian Math. (Iz. VUZ) 61 (6), 51–59 (2017)].

  10. V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  11. V. P. Tanana, Methods for Solving Operator Equations (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  12. G. M. Vainikko, Methods for Solving Linear Ill-Posed Problems in Hilbert Spaces (Izd. Tartu Gos. Univ., Tartu, 1982) [in Russian].

    Google Scholar 

  13. V. A. Morozov, Regular Methods of Solving Ill-Posed Problems (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  14. A. B. Bakushinskii and M. Yu. Kokurin, Algorithmic Analysis of Irregular Operator Equations (Lenand, Moscow, 2012) [in Russian].

    MATH  Google Scholar 

  15. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Acad. Publ., Dordrecht, 1996).

    Book  MATH  Google Scholar 

  16. A. S. Leonov, Solution of Ill-Posed Inverse Problems. Outline of Theory, Practical Algorithms, and Demonstrations in MATLAB (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  17. V. A. Vinokurov and Yu. L. Gaponenko, “A posteriori estimates of the solutions of ill-posed inverse problems,” Dokl. Akad. Nauk SSSR 263 (2), 277–280 (1982) [Soviet Math. Dokl. 25, 325–328 (1982)].

    MathSciNet  MATH  Google Scholar 

  18. K. Yu. Dorofeev, V. N. Titarenko, and A. G. Yagola, “Algorithms for constructing a posteriori errors of solutions to ill-posed problems,” Zh. Vychisl. Mat. i Mat. Fiz. 43 (1), 12–25 (2003) [Comput. Math. and Math. Phys. 43 (1), 10–23 (2003)].

    MathSciNet  MATH  Google Scholar 

  19. A.G. Yagola, N.N. Nikolaeva, and V. N. Titarenko, “Error estimation for a solution to the Abel equation on sets of monotone and convex functions,” Sib. Zh. Vychisl. Mat. 6 (2), 171–180 (2003).

    MATH  Google Scholar 

  20. A. B. Bakushinskii, “A posteriori error estimates for approximate solutions of irregular operator equations,” Dokl. Ross. Akad. Nauk 437 (4), 439–440 (2011) [Dokl. Math. 83 (2), 192–193 (2011)].

    MathSciNet  Google Scholar 

  21. A. B. Bakushinsky, A. Smirnova, and H. Liu, “A posteriori error analysis for unstable models,” J. Inverse Ill-Posed Probl. 20 (4), 411–428 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. B. Bakushinskii, and A. S. Leonov, “New a posteriori error estimates for approximate solutions of irregular operator equations,” Vych. Met. Programmirovanie 15 (2), 359–369 (2014).

    Google Scholar 

  23. A. S. Leonov, “A posteriori accuracy estimations of solutions to ill-posed inverse problems and extra-optimal regularizing algorithms for their solution,” Sib. Zh. Vychisl. Mat. 15 (1), 83–100 (2012) [Numer. Anal. Appl. 5 (1), 68–83 (2012)].

    MathSciNet  MATH  Google Scholar 

  24. A. S. Leonov, “Extra-optimal methods for solving ill-posed problems,” J. Inverse Ill-Posed Probl. 20 (5–6), 637–665 (2012).

    MathSciNet  MATH  Google Scholar 

  25. A. S. Leonov, “Pointwise extra-optimal regularizing algorithms,” Vych. Met. Programmirovanie 14 (2), 215–228 (2013).

    MathSciNet  Google Scholar 

  26. A. S. Leonov, “Regularizing algorithms with optimal and extra-optimal quality,” Sib. Zh. Vychisl. Mat. 19 (4), 371–383 (2016) [Numer. Anal. Appl. 9 (4), 288–298 (2016)].

    MathSciNet  MATH  Google Scholar 

  27. E. Giusti, Minimal Surfaces and Functions of Bounded Variation (Birkhauser Verlag, Basel, 1984).

    Book  MATH  Google Scholar 

  28. S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  29. S. J. Wernecke and L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. C-26 (4), 351–364 (1977).

    Article  MATH  Google Scholar 

  30. S. L. Sobolev, Several Applications of Functional Analysis in Mathematical Physics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Leonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, A.S. Methods for Solving Ill-Posed Extremum Problems with Optimal and Extra-Optimal Properties. Math Notes 105, 385–397 (2019). https://doi.org/10.1134/S000143461903009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143461903009X

Keywords

Navigation