Skip to main content
Log in

Two-dimensional high-resolution schemes and their application in the modeling of ionizing waves in gas discharges

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The method for constructing upwind high-resolution schemes is proposed in application to the modeling of ionizing waves in gas discharges. The flux-limiting criterion for continuity equations is derived using the proposed partial monotony property of a finite difference scheme. For two-dimensional extension, the cone transport upwind approach for constructing genuinely two-dimensional difference schemes is used. It is shown that when calculating rotations of symmetric profiles by using this scheme, a circular form of isolines is not distorted in a distinct from the coordinate splitting method. The conservative second order finite-difference scheme is proposed for solving the equations system of the drift-diffusion model of electric discharge; this scheme implies finite-difference conservation laws of electric charge and full electric current (fully conservative scheme). Computations demonstrate absence of numeric oscillations and good resolution of two-dimensional ionizing fronts in simulations of streamer and barrier discharges

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Diyakov, Yu. K. Bobrov, A. V. Sorokin, and Yu. V. Yurgelenas, Physics Fundamentals of Electric Breakdown in Gases (MPEI Publishers, Moscow, 1999) [in Russian].

    Google Scholar 

  2. A. J. Davies, “Discharge Simulation,” Proc. IEE, Part A: Sci. Meas. Technol. 133(4), 217–240 (1986).

    Google Scholar 

  3. R. Morrow and L. E. Cram, “Flux-Corrected Transport and Diffusion on a Non-Uniform Mesh,” J. Comput. Phys. 57(1), 129–136 (1985).

    Article  MATH  Google Scholar 

  4. D. L. Book and J. P. Boris, “Flux-Corrected Transport, II: Generalizations of the Method,” J. Comput. Phys. 18(3), 248–283 (1975).

    Article  Google Scholar 

  5. B. van Leer, “Towards the Ultimate Conservative Difference Scheme, IV: A New Approach to Numerical Convection,” J. Comput. Phys. 23(2), 276–299 (1977).

    Google Scholar 

  6. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 49, 357–393 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  7. P. K. Sweby, “High Resolution TVD Schemes Using Flux Limiters,” Lect. Appl. Math. 22, 289–309 (1985).

    MathSciNet  Google Scholar 

  8. B. P. Leonard, “The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection,” Comput. Meth. Appl. Mech. Engng. 88(1), 17–74 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  9. C. D. Munz, “On the Numerical Dissipation of High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 77(1), 18–39 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  10. E. E. Kunhardt and C.-H. Wu, “Towards a More Accurate Flux-Corrected Transport Algorithm,” J. Comput. Phys. 68(1), 127–150 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  11. Yu. K. Bobrov and Yu. V. Yurghelenas, “Application of High-Resolution Schemes in the Modeling of Ionization Waves in Gas Discharge,” Comput. Math. Math. Phys. 38(10), 1652–1661 (1998).

    MATH  MathSciNet  Google Scholar 

  12. P. Colella, “Multidimensional Upwind Methods for Hyperbolic Conservation Laws,” J. Comput. Phys. 87, 171–200 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. van Leer, “Multidimensional Explicit Difference Schemes for Hyperbolic Conservation Laws,” in Comput. Meth. Appl. Sci. Engng (Elsevier Sci. Publ. B.V., Amsterdam, 1994).

    Google Scholar 

  14. Yu. V. Yourguelenas, “Fully Conservative Monotonic Numerical Scheme for Streamer Plasma 2D-Modelling,” Czech. J. Phys. 50(Suppl. S3), 301–304 (2000).

    Article  Google Scholar 

  15. Yu. V. Yourguelenas, “Monotonic Fully Conservative Numerical Scheme for Streamer Discharge Simulation,” in 7th Internat. Symp. High Pressure Low Temperature Plasma Chemistry (HAKONE VII), Greiswald, Germany, 2000, Vol. 1, pp. 159–163.

  16. H.-E. Wagner, Yu. V. Yurgelenas, and R. Brandenburg, “The Development of Microdischarges of Barrier Discharges in N2/O2 Mixtures—Experimental Investigations and Modelling,” Plasma Phys. Control. Fusion 47, B641–B654 (2005).

    Article  Google Scholar 

  17. Yu. V. Yurgelenas and H.-E. Wagner, “A Computational Model of a Barrier Discharge in Air at Atmospheric Pressure: the Role of Residual Surface Charges in Microdischarge Formation,” J. Phys. D: Appl. Phys. 39, 4031–4043 (2006).

    Article  Google Scholar 

  18. Y. V. Yurgelenas and M. A. Leeva, “Development of a Barrier Discharge in Air in Highly Nonhomogeneous Electric Field Caused by the Residual Dielectric Surface Charges,” IEEE Trans. Plasma Sci. 37, 809–815 (2009).

    Article  Google Scholar 

  19. P. Lax and B. Wendroff, “Systems of Conservation Laws,” Communs Pure Appl. Math. 13, 217–237 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  20. R. F. Warming and R. M. Beam, “Upwind Second Order Difference Schemes and Application in Aerodynamics,” AIAA J. 14, 1241–1249 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  21. J. E. Fromm, “A Method of Reducing Dispersion in Convective Difference Schemes,” J. Comput. Phys. 3, 176–189 (1968).

    Article  MATH  Google Scholar 

  22. S. A. Velichko, Yu. B. Lifshitz, and I. A. Solntsev, High Accurate Scheme for Flow Computation over Moving Body, Preprint No. 92 (TsAGI, Moscow, 1996) [in Russian].

    Google Scholar 

  23. Yu. B. Radvogin, Quasi-Monotonic Multidimensional Difference Schemes of Second-Order Accuracy, Preprint No. 19 (Keldysh Inst. Appl. Math. RAS, Moscow, 1991) [in Russian].

    Google Scholar 

  24. H. T. Huynh, Accurate Upwind Schemes for the Euler Equations: AIAA paper 95-1737, pp. 1022–1039, 1995.

  25. A. A. Kulikovsky, “Two-Dimensional Simulation of Positive Streamer in N2 between Parallel-Plate Electrodes,” J. Phys. D: Appl. Phys. 28, 2483–2493 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Yurgelenas.

Additional information

Published in Russian in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2010, Vol. 50, No. 8, pp. 1420–1437

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurgelenas, Y.V. Two-dimensional high-resolution schemes and their application in the modeling of ionizing waves in gas discharges. Comput. Math. and Math. Phys. 50, 1350–1366 (2010). https://doi.org/10.1134/S0965542510080075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542510080075

Key words

Navigation