Skip to main content
Log in

Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new finite-difference method for the numerical simulation of compressible MHD flows is presented, which is applicable to a broad class of problems. The method relies on the magnetic quasi-gasdynamic equations (referred to as quasi-MHD (QMHD) equations), which are, in fact, the system of Navier–Stokes equations and Faraday’s laws averaged over a short time interval. The QMHD equations are discretized on a grid with the help of central differences. The averaging procedure makes it possible to stabilize the numerical solution and to avoid additional limiting procedures (flux limiters, etc.). The magnetic field is ensured to be free of divergence by applying Stokes’ theorem. Numerical results are presented for 3D test problems: a central blast in a magnetic field, the interaction of a shock wave with a cloud, and the three-dimensional Orszag–Tang vortex. Additionally, preliminary numerical results for a magnetic pinch in plasma are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Elizarova, Quasi-Gas Dynamic Equations (Nauchnyi Mir, Moscow, 2007; Springer-Verlag, Berlin, 2009).

    Book  MATH  Google Scholar 

  2. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (MAKS, Moscow, 2004; CIMNE, Barcelona, 2008).

    Google Scholar 

  3. Yu. V. Sheretov, Continuum Dynamics under Spatiotemporal Averaging (NITs Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2009).

    Google Scholar 

  4. T. G. Elizarova, I. S. Kalachinskaya, Yu. V. Sheretov, and I. A. Shirokov, “Numerical simulation of electrically conducting liquid flows in an external magnetic field,” J. Commun. Technol. Electron. 50 (2), 227–233 (2005).

    Google Scholar 

  5. T. G. Elizarova and S. D. Ustyugov, Preprint No. 1, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2011).

    Google Scholar 

  6. T. G. Elizarova and S. D. Ustyugov, Preprint No. 30, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2011).

    Google Scholar 

  7. B. Ducomet and A. Zlotnik, “On a regularization of the magnetic gas dynamics system of equations,” Kinetic Related Models 6 (3), 533–543 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).

    MATH  Google Scholar 

  9. T. G. Elizarova, “Time averaging as an approximate technique for constructing quasi-gasdynamic and quasihydrodynamic equations,” Comput. Math. Math. Phys. 51 (11), 1973–1982 (2011).

    Article  MathSciNet  Google Scholar 

  10. T. A. Gardiner and J. M. Stone, “An unsplit Godunov method for ideal MHD via constrained transport in three dimensions,” J. Comput. Phys. 227, 4123–4141 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. D. Ustyugov, M. V. Popov, A. F. Kritsuk, and M. L. Norman, “Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulation,” J. Comput. Phys. 228, 7614–7633 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Dai and P. Woodward, “A simple finite difference scheme for multidimensional magnetohydrodynamical equations,” J. Comput. Phys. 142, 331–369 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Tóth, “The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes,” J. Comput. Phys. 161, 605–652 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Orszag and C.-M. Tang, “Small-scale structure of two-dimensional magnetohydrodynamic turbulence,” J. Fluid Mech. 90, 129–143 (1979).

    Article  Google Scholar 

  15. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, “Stability of plasma” Sov. Phys. Usp. 4, 332–369 (1961).

    Article  Google Scholar 

  16. V. E. Golant, A. P. Zhilinskii, and S. A. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. G. Elizarova or M. V. Popov.

Additional information

Original Russian Text © T.G. Elizarova, M.V. Popov, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 8, pp. 1363–1379.

In blessed memory of Professor A.P. Favorskii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elizarova, T.G., Popov, M.V. Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations. Comput. Math. and Math. Phys. 55, 1330–1345 (2015). https://doi.org/10.1134/S0965542515080084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515080084

Keywords

Navigation