Skip to main content
Log in

Numerical Solution of the Problem of Incompressible Fluid Flow in a Plane Channel with a Backward-Facing Step at High Reynolds Numbers

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Numerical solutions of the problem of steady incompressible viscous fluid flow in a plane channel with a backward-facing step have been obtained by the grid method. The fluid motion is described by the Navier–Stokes equations in velocity-pressure variables. The main computations were performed on a uniform 6001 × 301 grid. The control-volume method of the second order in space was used for the difference approximation of the original equations. The results were validated for the range of Reynolds numbers (100 ≤ Re ≤ 3000) by comparing them with the experimental and theoretical data found in the literature. The stability of the computational algorithm at high Reynolds numbers was achieved by using a fine difference grid (a small grid step). The study has been carried out for a short channel at Reynolds numbers from 1000 to 10 000 with a step of 1000. A nonstandard structure of the primary vortex behind the step—the presence of numerous centers of rotation both inside the vortex and in the near-wall region under it—has been revealed. The number of centers of rotation in the primary recirculation zone is shown to grow with increasing Reynolds number. The profiles of the coefficients of friction and hydrodynamic resistance to the flow as a function of Reynolds number have also been analyzed. The results obtained can be useful for comparison and validation of the solutions of problems of such a type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gartling, D.K., A test problem for outflow boundary conditions-flow over a backward-facing step, Int. J. Numer. Meth. Fluids, 1990, vol. 11, no. 7, pp. 953–967. https://doi.org/10.1002/fld.1650110704

    Article  Google Scholar 

  2. Rogers, S.E. and Kwak, D., An upwind differencing scheme for the incompressible Navier–Stokes equations, Appl. Numer. Math., 1991, vol. 8, no. 1, pp. 43–64. https://doi.org/10.1016/0168-9274(91)90097-J

    Article  MathSciNet  MATH  Google Scholar 

  3. Durst, F., Pereira, J.C.F., and Tropea, C., The plane symmetric sudden-expansion flow at low Reynolds numbers, J. Fluid Mech., 1993, vol. 248, pp. 567–581. https://doi.org/10.1017/S0022112093000916

    Article  ADS  Google Scholar 

  4. Valencia, A. and Hinojosa, L., Numerical solutions of pulsating flow and heat transfer characteristics in a channel with a backward-facing step, Heat Mass Transfer, 1997, vol. 32, no. 3, pp. 143–148. https://doi.org/10.1007/s002310050104

    Article  ADS  Google Scholar 

  5. Batenko, S.R. and Terekhov, V.I., Effect of dynamic prehistory on aerodynamics of a laminar separated flow in a channel behind a rectangular backward-facing step, J. Appl. Mech. Tech. Phys., 2002, vol. 43, no. 6, pp. 854–860. https://doi.org/10.1023/A:1020712520195

    Article  ADS  MATH  Google Scholar 

  6. Biswas, G., Breuer, M., and Durst, F., Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers, J. Fluids Eng., 2004, vol. 126, pp. 362–374. https://doi.org/10.1115/1.1760532

    Article  Google Scholar 

  7. Batenko, S.R. and Terekhov, V.I., Friction and heat transfer in a laminar separated flow behind a rectangular step with porous injection or suction, J. Appl. Mech. Tech. Phys., 2006, vol. 47, no. 1, pp. 12–21. https://doi.org/10.1007/s10808-006-0002-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Abu-Nada, E., Al-Sarkhi, A., Akash, B., and Al-Hinti, I., Heat transfer and fluid flow characteristics of separated flows encountered in a backward-facing step under the effect of suction and blowing, J. Heat Transfer, 2007, vol. 129, no. 11, pp. 1517–1528. https://doi.org/10.1115/1.2759973

    Article  Google Scholar 

  9. Bubenchikov, A.M., Firsov, D.K., and Kotovshchikova, M.A., Numerical solution of 2D viscous fluid dynamics problems using finite volume method (FVM) on triangular grid, Mat. Model., 2007, vol. 19, no. 6, pp. 71–86.

    MathSciNet  MATH  Google Scholar 

  10. Bruyatskii, E.V. and Kostin, A.G., Direct numerical simulation of flow in a plane channel with sudden expansion based on the Navier–Stokes equations, Prikl. Gidromekh., 2010, vol. 12, no. 1, pp. 11–27.

    Google Scholar 

  11. Poponin, V.S., Kosheutov, A.V., Grigor’ev, V.P., and Mel’nikova, V.N., A method of spectral elements for solving plane problems of viscous fluid dynamics on unshifted unstructured grids, Izv. Tomsk. Politekh. Univ., 2010, vol. 317, no. 2, pp. 31–36.

    Google Scholar 

  12. Fomin, A.A. and Fomina, L.N., Numerical simulation of the viscous incompressible fluid flow and heat transfer in a plane channel with backward-facing step, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015, vol. 25, no. 2, pp. 280–294. https://doi.org/10.20537/vm150212

    Article  MATH  Google Scholar 

  13. Aleksin, V.A. and Manaenkova, T.A., Calculation of incompressible separated fluid flows, taking into account heat transfer, Izv. Mosk. Industr. Univ., 2011, no. 4 (24), pp. 28–38.

    Google Scholar 

  14. Borzenko, E.I. and Khegai, E.I., Numerical simulation of the steady-state Herschel–Bulkley fluid flow in a channel with sudden expansion, Vestn. Tomsk Univ., Mat. Mekh., 2016, no. 1 (39), pp. 68–81. https://doi.org/10.17223/19988621/39/8

    Google Scholar 

  15. Armaly, B.F., Durst, F., Pereira, J.C.F., and Schönung, B., Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech., 1983, vol. 127, pp. 473–496. https://doi.org/10.1017/S0022112083002839

    Article  ADS  Google Scholar 

  16. Cruchaga, M.A., A study of the backward-facing step problem using a generalized streamline formulation, Commun. Numer. Meth. Eng., 1998, vol. 14, no. 8, pp. 697–708. https://doi.org/10.1002/(SICI)1099-0887(199808)14:8%3c697::AID-CNM155%3e3.0.CO;2-0

    Article  MATH  Google Scholar 

  17. Lee, T. and Mateescu, D., Experimental and numerical investigation of 2D backward-facing step flow, J. Fluid. Struct., 1998, vol. 12, no. 6, pp. 703–716. https://doi.org/10.1006/jfls.1998.0166

    Article  Google Scholar 

  18. Chiang, T.P., Sheu, T.W.H., and Fang, C.C., Numerical investigation of vortical evolution in a backward-facing step expansion flow, Appl. Math. Model., 1999, vol. 23, no. 12, pp. 915–932. https://doi.org/10.1016/S0307-904X(99)00019-0

    Article  MATH  Google Scholar 

  19. Mouza, A.A., Pantzali, M.N., Paras, S.V., and Tihon, J., Experimental and numerical study of backward-facing step flow, in Proceedings of the 5th National Chemical Engineering Conference, Thessaloniki, Greece, 2005. https://doi.org/philon.cheng.auth.gr/philon/site/sdocs/paper%205PESXM_Tihon.pdf.

    Google Scholar 

  20. Erturk, E., Numerical solutions of 2D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Comput. Fluids, 2008, vol. 37, no. 6, pp. 633–655. https://doi.org/10.1016/j.compfluid.2007.09.003

    MATH  Google Scholar 

  21. Tihon, J., Pénkavová, V., Havlica, J., and Šimčík, M., The transitional backward-facing step flow in a water channel with variable expansion geometry, Exp. Therm. Fluid Sci., 2012, vol. 40, pp. 112–125. https://doi.org/10.1016/j.expthermflusci.2012.02.006

    Article  Google Scholar 

  22. Saleel, C.A., Shaija, A., and Jayaraj, S., On simulation of backward facing step flow using immersed boundary method, Am. J. Fluid Dyn., 2013, vol. 3, no. 2, pp. 9–19. https://doi.org/10.5923/j.ajfd.20130302.01

    MATH  Google Scholar 

  23. Teruel, F.E. and Fogliatto, E., Numerical simulations of flow, heat transfer and conjugate heat transfer in the backward-facing step geometry, Mec. Comput., 2013, vol. 32, no. 39, pp. 3265–3278. https://doi.org/www.cimec.org.ar/ojs/index.php/mc/article/viewFile/4551/4480.

    Google Scholar 

  24. Moffatt, H.K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 1964, vol. 18, no. 1, pp. 1–18. https://doi.org/10.1017/S0022112064000015

    Article  ADS  MATH  Google Scholar 

  25. Sinha, S.N., Gupta, A.K., and Oberai, M., Laminar separating flow over backsteps and cavities, Part I: Backsteps, AIAA J., 1981, vol. 19, no. 12, pp. 1527–1530. https://doi.org/10.2514/3.7885

    Google Scholar 

  26. Erturk, E., Discussions on driven cavity flow, Int. J. Numer. Meth. Fluids, 2009, vol. 60, no. 3, pp. 275–294. https://doi.org/10.1002/fld.1887

    Article  MathSciNet  MATH  Google Scholar 

  27. Fomin, A.A. and Fomina, L.N., On stationary solution of the problem of an incompressible viscous fluid at high Reynolds numbers, Mat. Model. Chisl. Metody, 2015, no. 4 (8), pp. 92–109. https://doi.org/mmcm.bmstu.ru/articles/65/.

    Google Scholar 

  28. Fomin, A.A. and Fomina, L.N., Numerical simulation of viscous incompressible fluid in a short plane channel with backward-facing step, Mat. Model., 2016, vol. 28, no. 5, pp. 32–46.

    MathSciNet  MATH  Google Scholar 

  29. Roache, P.J., Computational Fluid Dynamics, Albuquerque, NM: Hermosa, 1976.

    MATH  Google Scholar 

  30. Kosma, Z., The method of lines for the computation of incompressible viscous flows, Proc. Appl. Math. Mech., 2009, vol. 9, no. 1, pp. 483–484. https://doi.org/10.1002/pamm.200910214

    Article  Google Scholar 

  31. Loitsyanskii, L.G., Mechanics of Liquids and Gases, New York: Begell House, 1995.

    MATH  Google Scholar 

  32. Belotserkovskii, O.M., Gushchin, V.A., and Shchennikov, V.V., Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid, USSR Comput. Math. Math. Phys., 1975, vol. 15, no. 1, pp. 190–200. https://doi.org/10.1016/0041-5553(75)90146-9

    Article  Google Scholar 

  33. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Washington: Hemisphere, 1980.

    MATH  Google Scholar 

  34. Fomin, A.A. and Fomina, L.N., Acceleration of the line-by-line recurrent method in Krylov subspaces, Vestn. Tomsk Univ., Math. Mekh., 2011, no. 2, pp. 45–54.

    Google Scholar 

  35. Lashkin, S.V., Kozelkov, A.S., Yalozo, A.V., Gerasimov, V.Yu., and Zelensky, D.K., Efficiency analysis of parallel implementation of simple algorithm on multi-processor computers, Vychisl. Mekh. Splosh. Sred, 2016, vol. 9, no. 3, pp. 298–315. https://doi.org/10.7242/1999-6691/2016.9.3.25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fomin.

Additional information

Original Russian Text © A.A. Fomin, L.N. Fomina, 2018, published in Vychislitel’naya Mekhanika Sploshnykh Sred, 2017, Vol. 10, No. 3, pp. 260–275.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, A.A., Fomina, L.N. Numerical Solution of the Problem of Incompressible Fluid Flow in a Plane Channel with a Backward-Facing Step at High Reynolds Numbers. J Appl Mech Tech Phy 59, 1211–1226 (2018). https://doi.org/10.1134/S0021894418070052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418070052

Key words

Navigation