Skip to main content
Log in

Vodorazdelny Granitic Pluton, Subpolar Urals, and Problems of Correlation of Pre-Ordovician Granitoids and Volcanic Rocks of the Northern Part of the Lyapin Anticlinorium

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The petrochemical features of granites of the Vodorazdelny pluton (Subpolar Urals, Lyapin Anticlinorium) indicate that these suprasubduction rocks are similar to I-granites. The ratios of key elements (Rb, Ba, Th, Sr, Y, and Nb) suggest that mafic rocks of a melting slab and fluid related to their dehydration could have been involved in the generation of granites. The U–Pb age of the main population of igneous zircons of 593 ± 4 Ma corresponds to the Vendian (Ediacaran) and coincides with the age of granites of the nearby Vangyr pluton (598 ± 5 Ma), as well as the age of cores of zircons from granites of the Kozhim pluton in the north. The εHf(t) values (from –2 to 0) of igneous zircons with the age corresponding to the age of granites of the Vodorazdelny pluton indicate a heterogeneous melt source. The petrogeochemical and isotopic-geochronological parameters of granites (as well as zircons) are inconsistent with the attribution of the Vodorazdelny pluton (and analogous Vangyr and Kozhim plutons) to the Cambrian Salner–Mankhambo complex and indicate the recognition of a possible Vendian (?) complex with the age of ~598 Ma during the geological survey. The presence of Middle Riphean–Vendian–Cambrian stages of granite formation in the Lyapin Anticlinorium and related metamorphism and a complex composition of ancient metamorphic sequences in the basement of this structure are responsible for the varying isotopic parameters characterizing the heterogeneous melt source, on one hand, and a convergent series of geochemical features, on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Altherr, R., Holl, A., Hegner, E., Langer, C., and Kreuzer, H., High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany), Lithos, 2000, vol. 50, pp. 51–73.

    Article  Google Scholar 

  2. Andreichev, V.L., Gechronology of granitoid magmatism of the Subpolar Urals, Vestn. IG Komi NTs UrO RAN, 2010, no. 11, pp. 7–12.

  3. Andreichev, V.L., Soboleva, A.A., and Gehrels, G.E., U–Pb age of detrital zircons from the Upper Precambrian terrigenous section of North Timan, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 592–596.

    Article  Google Scholar 

  4. Aplonov, S.V., Geodinamika (Geodynamics), St. Petersburg: SPbGU, 2001 [in Russian].

  5. Balashov, Yu.A. and Skublov, S.G., Contrasting geochemistry of magmatic and secondary zircons, Geochem. Int., 2011, vol. 49, no. 6, pp. 594–604.

    Article  Google Scholar 

  6. Belousova, E.A., Griffin, W.L., O’Reilly, S., and Fisher, N.I., Igneous zircon: Trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 602–622.

    Article  Google Scholar 

  7. Bonin, B., A-type granites and related rocks: Evolution of a concept, problems and prospects, Lithos, 2007, vol. 97, pp. 1–29.

    Article  Google Scholar 

  8. Chappell, B.W. and White, A.J.R., I- and S-type granites in the Lachlan Fold B, Trans. R. Soc. Edinburg Earth Sci., 1992, vol. 83, pp. 1–26.

    Google Scholar 

  9. Chen, R.-X., Zheng, Y.-F., and Zie, L., Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-sity analyses of trace elements, U–Th–Pb and Lu–Hf isotopes in zircon from eclogite-facies rocks in the Sulu orogen, Lithos, 2010, vol. 114, pp. 132–154.

    Article  Google Scholar 

  10. Chervyakovskaya, M.V., Votyakov, S.L., and Chervyakovskiy, V.S., Study of Lu/Hf isotopic composition of zircons using a Neptune Plus multicollector inductively coupled plasma mass spectrometer with an NWR 213 laser ablation attachment, Analitika Kontrol’, 2021, vol. 25, no. 3, pp. 212–221.

    Google Scholar 

  11. Chervyakovskaya, M.V., Chervyakovskiy, V.S., and Votyakov, S.L., LA-ICP-MS analysis of trace elements in silicate minerals on ON ICP-MS NEXION 300S mass-spectrometer with NWR 213 attachment for laser ablation: Methodological aspects, Geodynam. Tectonophys., 2022, vol. 13, no. 2s, pp. 1–8.

    Google Scholar 

  12. Chervyakovskiy, S.G., Ivanov, V.N., Kurzanov, I.Yu., Kuzenkov, N.A., and Ronkin, Yu.L., On the age of the Malyi Patok granitoid massif (Subpolar Urals) and its formational belonging, in Ezhegodnik-91. Inform. sb. nauchn. tr. IGG UrO RAN (Yearbook-1991. Coll. Sci. Works Inst. Geol. Geochem. Ural. Branch Russ. Acad. Sci.), Ekaterinburg: Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, 1992, pp. 71–74.

  13. Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fa, J.-X., T The ICS International Chronostratigraphic Chart, Episodes, 2013, vol. 36, pp. 199–204.

    Article  Google Scholar 

  14. Dashkevich, G.I. and Gesse, V.N., Gosudarstvennaya geologicheskaya karta SSSR. Masshtab 1 : 200 000. Seriya Severo-Ural’skaya. List Q-40-XXX (Manaraga) (The 1 : 200 000 State Geological Map of the USSR. Ser. North Urals. Sheet Q-40-XXX (Manaraga)), Leningrad: Vseross. Nauchno-Issled. Geol. Inst., 1982 [in Russian].

  15. Dovzhikova, E.G., Late Cambrian magmatism of the Pechora Fault Zone (the central part of the Pechora Plate), Cand. (Geol.-Mineral.) Dissertation, Syktyvkar, 2007.

  16. Dushin, V.A., Ronkin, Yu.L., and Lepikhina, O.P., Age and geodynamic position of granitoids of the Man’khambo block (North Urals): U–Pb and Sm–Nd isotope systematics and geochemical constraints, in Izotopnye sistemy i vremya geologicheskikh protsessov. Mater. IV Ross. Konf. po izotopnoi geokhronologii (Proc. IV Russ. Isotope Geochronol. Conf. “Isotope Isotope Systems and the Time of Geological Processes”), St. Petersburg, 2009, vol. 1, pp. 125–127.

  17. Dushin, V.A., Koz’min, V.S., Serdyukova, O.P., Nikulina, I.A., and Kolganov, E.R., Geology and rare-metal-uranium-thorium compound mineralization of Mankhambo block (Subpolar Urals), Litosfera, 2012, no. 2, pp. 166–172.

  18. Dushin, V.A., Serdyukova, O.P., Malyugin, A.A., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Izdanie vtoroe. Seriya Severo-Ural’skaya. List P-40-XII (g. Kozhim-Iz). Ob’’yasnitel’naya zapiska (The 1 : 200 000 State Geological Map of the Russian Federation, 2nd ed. Ser. North Urals. Sheet P-40-XII (Kozhim-Iz). Explanatory Note), Moscow: Mosk. Fil. Vseross. Nauchno-Issled. Geol. Inst., 2017 (in Russian).

  19. Faure, G., Principles of Isotope Geology, 2nd ed., New York: John Wiley, 1986.

    Google Scholar 

  20. Ferry, J.M. and Watson, E.B., New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. Mineral. Petrol., 2007, vol. 154, pp. 429–437.

    Article  Google Scholar 

  21. Fershtater, G.B., Petrologiya glavnykh intruzivnykh assotsiatsii (Petrology of the Main Intrusive Associations), Moscow: Nauka, 1987 [in Russian].

  22. Fershtater, G.B., Paleozoiskii intruzivnyi magmatizm Srednego i Yuzhnogo Urala (Paleozoic Intrusive Magmatism of the Middle and Southern Urals), Ekaterinburg: RIO Ural. Otd. Ross. Akad. Nauk, 2013 [in Russian].

  23. Fishman, M.V. and Goldin, B.A., Granitoidy tsentral’noi chasti Pripolyarnogo Urala (Granitoids of the Central Part of the Subpolar Urals), Moscow–Leningrad: Izd. Akad. Nauk SSSR, 1963 [in Russian].

  24. Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S., and Valley, J.W., Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia, Chem. Geol., 2009, vol. 259, pp. 131–142.

    Article  Google Scholar 

  25. Gerdes, A. and Zeh, A., Zircon formation versus zircon alteration – new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt, Chem. Geol., 2009, vol. 261, pp. 230–243.

    Article  Google Scholar 

  26. Grimes, C.B., Joh, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghoj, K., and Schwartz, J.J., Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance, Geology, 2007, vol. 35, pp. 643–646.

    Article  Google Scholar 

  27. Hanchar, J.M. and Watson, E.B., Zircon saturation thermometry, Rev. Mineral. Geochem., 2003, vol. 53, no. 1, pp. 89–112.

    Article  Google Scholar 

  28. Harrison, T.M. and Schmitt, A.K., High sensitivity mapping of Ti distributions in Hadean zircons, Earth Planet. Sci. Lett., 2007, vol. 261, pp. 9–19.

    Article  Google Scholar 

  29. Hoskin, P.W.O., Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 3, pp. 637–648.

    Article  Google Scholar 

  30. Hoskin P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 3, pp. 637–648.

    Article  Google Scholar 

  31. Hoskin, P.W.O. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, in Zircon, Hanchar, J.M., and Hoskin, P.W.O., Eds., Rev. Mineral. Geochem., 2003, vol. 53, pp. 7–62.

    Google Scholar 

  32. Il’yasova, G.A., Ostanin, S.Yu., Mikhaleva, E.N., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Izd. vtoroe. Seriya Severo-Ural’skaya. List R-40-XVIII (Lopsiya). Ob’’yasnitel’naya zapiska (The 1 : 200 000 State Geological Map of the Russian Federaton, 2nd ed., Ser. Northern Urals, Sheet R-40-XVIII (Lopsiya). Explanatory Note), Moscow: Mosk. Fil. Vseross. Nauchno-Issled. Geol. Inst., 2017 [in Russian].

  33. Ivanov, V.N., Zharkova, T.B., Kurzanov, I.Yu., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Seriya Severo-Ural’skaya. List Q-40-XXX (Manaraga). Ob’’yasnitel’naya zapiska (The 1 : 200 000 State Geological Map of the Russian Federation. Ser. North Urals. Sheet Q-40-XXX (Manaraga). Explanatory Note), Moscow: Mosk. Fil. Vseross. Nauchno-Issled. Geol. Inst., 2013a [in Russian].

  34. Ivanov, V.N., Zharkova, T.B., Kurzanov, I.Yu., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Seriya Severo-Ural’skaya. List Q-41-XXV. (Narodnaya). Ob’’yasnitel’naya zapiska (The 1 : 200000 State Geological Map of the Russian Federation. Ser. North Urals. Sheet Q-42-XXV (Narodnaya). Explanatory Note), Moscow: Mosk. Fil. Vseross. Nauchno-Issled. Geol. Inst., 2013b [in Russian].

  35. Kepezhinskas, P., McDermott, F., Defant, M.J., Hawkesworth, C.J., Hochstaedter, A., Drummond, M.S., Koloskov, A., Maury, R.C., and Bellon, H., Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 577–600.

    Article  Google Scholar 

  36. Kholodnov, V.V., Shardakova, G.Yu., Puchkov, V.N., Petrov, G.A., Shagalov, E.S., Salikhov, D.N., Korovko, A.V., Pribavkin, S.V., Rakhimov, I.R., and Borodina, N.S., Paleozoic granitoid magmatism of the Urals: the reflection of the stages of geodynamic and geochemical evolution of a collisional orogen, Geodynam. Tectonophys., 2021, vol. 12, no. 2, pp. 225–245.

    Article  Google Scholar 

  37. Kholodnov, V.V., Shardakova, G.Yu., Dushin, V.A., Korovko, A.V., and Shagalov, E.S., Riphean–Vendian–Cambrian magmatism of the Mankhambo Block (Subpolar Urals): Geochemical typification, correction of geodynamic concepts, and the role of plume–lithosphere interaction, Petrology, 2022, vol. 30, no. 4, pp. 392–417.

    Article  Google Scholar 

  38. Kostitsyn, Y.A., Belousova, EA., Silant’ev, S.A., Bortnikov, N.S., and Anosova, M.O., Modern problems of geochemical and U–Pb geochronological studies of zircon in oceanic rocks, Geochem. Int., 2015, vol. 53, no. 9, pp. 759–785.

    Article  Google Scholar 

  39. Krasotkina, A.O., Skublov, S.G., Kuznetsov, A.B., Makeev, A.B., Astaf’ev, B.Yu., and Voinova, O.A., The first data on the age (U–Pb, SHRIMP-II) and composition of zircon from the unique Yarega oil–titanium deposit, South Timan, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 872–879.

    Article  Google Scholar 

  40. Kuznetsov, N.B., Cambrian Baltica–-Arctida collision is the earliest stage of “assembling” the northern part of the Late Paleozoic–Early Mesozoic Pangea supercontinent, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2009, vol. 84, no. 1, pp. 18–38.

    Google Scholar 

  41. Kuznetsov, N.B. and Udoratina, O.V., Age and geodynamic environments of the formation of the Late Precambrian granitoids of the Vangyr massif, Subpolar Urals, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2007, vol. 82, no. 2, pp. 3–12.

    Google Scholar 

  42. Kuznetsov, N.B., Soboleva, A.A., Udoratina O.V., Gertseva, M.V., Andreichev, V.L., and Dorokhov, N.S., Pre-Uralian tectonic evolution of the north-east and east frame of the East European Craton. Part 2. Neoproterozoic—Cambrian Baltica–Arctida collision, Litosfera, 2007, no. 1, pp. 32–45.

  43. Kuznetsov, N.B., Natapov, L.M., Belousova, E.A., O’Reilly, S.Y., and Griffin, W.L., Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: Implications for plate tectonic models, Gondwana Res., 2010, vol. 17, nos. 2/3, pp. 583–601.

    Article  Google Scholar 

  44. Lokhov, K.I., Kapitonov, I.N., Prasolov, E.M., and Sergeev, S.A., Extremely radiogenic hafnium in the zircons from Precambrian calciphyres, Dokl. Earth Sci., 2009, vol. 425, no. 5, pp. 463–466.

    Article  Google Scholar 

  45. Loucks, R.R., Fiorentini, M.L., and Rohrlach, B.D., Divergent Ti–HO2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry, Contrib. Mineral. Petrol., 2018, vol. 173, no. 12, pp. 1–21.

    Article  Google Scholar 

  46. Makhlaev, L.V., Granitoidy severa Tsentral’no-Ural’skogo podnyatiya: Polyarnyi i Pripolyarnyi Ural (Granitoids of Northern Central Ural Uplift: Polar and Subpolar Urals), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.

  47. Martin, H., The mechanisms of petrogenesis of the Archaean continental crust—Comparison with modern processes, Lithos, 1993, vol. 30, nos. 3–4, pp. 373–388.

    Article  Google Scholar 

  48. Martynov, Yu.A., Osnovy magmaticheskoi geokhimii (Foundations of Magmatic Geochemistry), Vladivostok: Dal’nauka, 2010 [in Russian].

  49. McDonough, W.F. and Sun, S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  50. Pearce, J.A., Harris, N.B., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, no. 4, pp. 956–983.

    Article  Google Scholar 

  51. Pelleter, E., Cheilletz, A., Gasquet, D., Mouttaqi, A., Annich, M., Hakour, A.E., Deloule, E., and Feraud, G., Hydrothermal zircons: a tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit—Morocco), Chem. Geol., 2007, vol. 245, pp. 135–161.

    Article  Google Scholar 

  52. Petrov, G.A., Kholodnov, V.V., Ostanin, S.Yu., Shagalov, E.S., and Konovalova, E.V., Fluid regime of formation and metallogenic features of granitoids of the Yuzhno-Pomursky Massif (Northern Urals), Litosfera, 2017, vol. 17, no. 5, pp. 103–112.

    Google Scholar 

  53. Puchkov, V.N., Paleogeodinamika Yuzhnogo i Srednego Urala (Paleogeodynamics of the Southern and Middle Urals), Ufa: GILEM, 2000 [in Russian].

  54. Puchkov, V.N., The plume-dependent granite-rhyolite magmatism, Litosfera, 2018, no. 5, pp. 692–705.

  55. Pystin, A.I. and Pystina, Yu.I., Metamorphism and granite formation in the Proterozoic–Early Paleozoic history of the formation of the Subpolar Ural segment of the Earth’s crust, Litosfera, 2008, no. 6, pp. 25–38.

  56. Pystin, A.I. and Pystina, Yu.I., New data on the age of granitoids of the Subpolar Urals in connection with the problem of distinguishing of the Middle Riphean Kozhim granite-rhyolite formation, Izv. Komi NTs UrO RAN, 2011, vol. 4 (8), pp. 73–78.

    Google Scholar 

  57. Pystina, Yu.I. and Pystin, A.I., Typomorphic characteristics of zircon as a criterion for subdivision and correlation of granitoids (on an example of the northern part of the Subpolar Urals), Vestn. IG Komi NTs UrO RAN, 2017, no. 12, pp. 3–15.

  58. Rubatto, D., Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism, Chem. Geol., 2002, vol. 184, nos. 1–2, pp. 123–138.

    Article  Google Scholar 

  59. Rudich, K.N., Magma maloglubinnykh kamer (Shallow Magma Chambers), Moscow: Nauka, 1967 [in Russian].

  60. Rudnik, R.L. and Gao, S., Composition of the continental crust, Treatise of Geochemistry, 2003, vol. 3, pp. 1–64.

    Google Scholar 

  61. Semikhatov, M.A., Kuznetsov, A.B., and Chumakov, N.M., Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: The evolution of opinions and the current estimate, Stratigr. Geol. Correl., 2015, vol. 23, no. 6, pp. 568–579.

    Article  Google Scholar 

  62. Shardakova, G.Yu., Geochemistry and isotopic ages of granitoids of the Bashkirian Mega-Anticlinorium: Evidence for several pulses of tectono–magmatic activity at the junction zone between the Uralian orogen and East European Platform, Geochem. Int., 2016, vol. 54, no. 7, pp. 594–608.

    Article  Google Scholar 

  63. Sharpenok, L.V., Kostin, A.E., and Kukharenko, E.A., The alkali sum-silica diagram (TAS) for chemical classification and diagnostics of plutonic rocks, Regional. Geol. Metallogen., 2013, no.56, pp. 40–50.

  64. Soboleva, A.A., The problem of heterogeneity of the Sal’ner–Man’khambo granitoid complex, in Geologiya i poleznye iskopaemye Zapadnogo Urala. Mater. Regional. nauchno-prakt. konf. (Proc. Regional Sci.-Pract. Conf. “Geology and Mineral Resources of the Western Urals”), Perm: Perm. GOs. Univ., 2001, pp. 34–37.

  65. Soboleva, A.A., Vulkanity i assotsiiruyushchie s nimi granitoidy Pripolyarnogo Urala (Volcanics and Related Granitoids of the Subpolar Urals), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2004 [in Russian].

  66. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Spec. Publ.—Geol. Soc. London, 1989, vol. 42, no. 1, pp. 313–345.

    Article  Google Scholar 

  67. Sylvester, P.J., Post-collisional strongly peraluminous granites, Lithos, 1998, vol. 45, pp. 29–31.

    Article  Google Scholar 

  68. Trail, D., Watson, E.B., and Tailby, N.D., Ce- and Eu-anomalies in zircon as proxies for the oxidation state of magmas, Geochim. Cosmochim. Acta, 2012, vol. 97, no. 1, pp. 70–87.

    Article  Google Scholar 

  69. Udoratina, O.V., Soboleva, A.A., Kuzenkov, N.A., Rodionov, N.V., and Presnyakov, S.L., Age of granitoids in the Man’khambo and Il’yaiz massifs, the Northern Urals, Dokl. Earth Sci., 2006, vol. 407, no. 2, pp. 284–289.

    Article  Google Scholar 

  70. Udoratina, O.V., Shuiskii, A.S., and Kapitanova, V.A., Granitoids of the Kozhim massif (Subpolar Urals): U–P and Lu–Hf data, Izv. Komi NTs UrO RAN, 2020, no. 1(41), pp. 96–105.

  71. Udoratina, O.V., Kulikova, K.V., and Shuyskiy, A.S., Soboleva, A.A., Andreichev, V.L., Golubeva, I.I., and Kapitanova, V.A., Granitoid magmatism in the north of the Urals: U–Pb age, evolution, sources, Geodynam. Tectonophys., 2021, vol. 12, no. 2, pp. 287–309.

  72. Volchek, E.N., Geodinamicheskie obstanovki kislogo vulkanizma zapadnogo sektora severa Urala (Geodynamic Conditions of Felsic Volcanism in the Western Sector of the North of the Urals), Ekaterinburg: Izd. Ural. Otd. Ross. Akad. Nauk, 2004 [in Russian].

  73. Wang, F.Y., Liu, S.A., Li, S.G., and Yongsheng, H., Contrasting zircon Hf–O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in Central-Eastern China: Implications for genetic relation to Cu–Au mineralization, Lithos, 2013, vol. 156–159, pp. 97–111.

    Article  Google Scholar 

  74. Whalen, J.B., Currle, K.L., and Chappell, B.W., A-type granites: Geochemical characteristics, discrimination and petrogenesis, Geol. Soc. Am. Abstr. Progr., 1979.

  75. Yan, Q., Zhang, P., Metcalfe, I., Liu, Y., Wu, Sh., and Shi, X., Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes, Mineral. Petrol., 2019, vol. 113, pp. 803–820.

    Article  Google Scholar 

  76. Zaitceva, M.V., Pupyshev, A.A., Shchapova, Yu.V., and Votyakov, S.L., The U-Pb dating of zircons using NexION 300S quadrupole mass spectrometer with inductively coupled plasma and NWR 213 attachment for laser ablation, Analitika Kontrol’, 2016, vol. 20, no. 4, pp. 294–306.

    Google Scholar 

  77. Zhong, S., Feng, C., Seltmann, R., Li, D., and Qu, H., Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition, Lithos, 2018, vol. 314–315, pp. 646–657.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The first routes in the Vodorazdelny pluton were conducted together with a field team of S.G. Chervyakovskiy, who was a famous geologist and an expert of the Subpolar Urals.

Funding

This work was supported by state contracts of the IGG UB RAS nos. 123011800009-9 and АААА-А19-119072990020-6. Reequipment and complex development of the Center for Collective Use Geoanalitik of the IGG UB RAS is supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2021-680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Shardakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to memory of S.D. Chervyakovskiy

Translated by I. Melekestseva

Reviewers A.B. Kuznetsov and G.A. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shardakova, G.Y., Volchek, E.N., Chervyakovskiy, V.S. et al. Vodorazdelny Granitic Pluton, Subpolar Urals, and Problems of Correlation of Pre-Ordovician Granitoids and Volcanic Rocks of the Northern Part of the Lyapin Anticlinorium. Stratigr. Geol. Correl. 31, 109–134 (2023). https://doi.org/10.1134/S0869593823030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593823030073

Keywords:

Navigation