Skip to main content
Log in

Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Mariana Trough, a relatively simple intra-oceanic back-arc basin, is ideal for investigating magmatic processes and mantle-crust interaction in a subduction setting. We present new major- and trace element compositions for 31 basaltic lava and glass samples from the Mariana Trough back-arc spreading center. The studied lavas include phenocrysts of plagioclase, olivine and pyroxene. Major element compositions show that these lavas range from tholeiitic basalt to basaltic andesite, and belong to a sub-alkali tholeiitic series produced by fluid-influenced fractional crystallization of primary basaltic melts. Trace element compositions show that these lavas are transitional between typical normal mid-ocean ridge basalts (MORB) and island arc basalt (IAB), and are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs). Trace element ratios, e.g., Ba/Th, Pb/Ce, Th/Nd, La/Sm, Th/Nb, Ba/Nb and Th/Nb, indicate that the mantle from which these lavas were derived underwent modification resulting from the addition of multiple subduction components. Some typical trace element ratios (e.g., Ba/Nb- total subduction component, Ba/Th- shallow subduction, and Th/Nb-deep subduction component) from our new data and the literature suggest that a latitudinal variation exists in addition to subduction components, and indicates a more complex and heterogeneous distribution of subduction components in the Mariana back-arc region. We suggest that, (1) compared to back-arc locations at 18° N and 15.5° N, lavas from back-arc locations at 17° N indicate higher levels of modification by hydrous fluid released from the subducted slab, and (2) compared to back-arc locations at 17° N and 15.5° N, petrogenesis of lavas from back-arc locations at 18° N indicates a greater influence of sediment melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geotherm Res 102:67–95

    Google Scholar 

  • Ariskin AA, Barmina GS (1999) An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 2. Fe-Ti oxides. Contrib Mineral Petrol 134(2):251–263

    Google Scholar 

  • Bibee LD, Shor GG, Lu RS (1980) Inter-arc spreading in the Mariana Trough. Mar Geol 35(1):183–197

    Google Scholar 

  • Brounce MN, Kelley KA, Cottrell E (2014) Variations in Fe3+/∑ Fe of Mariana arc basalts and mantle wedge fO2. J Petrol 55(12):2513–2536

    Google Scholar 

  • Castillo PR, Lonsdale PF, Moran CL, Hawkins JW (2009) Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga-Kermadec trench: Implications for the generation of arc Lavas. Lithos 112:87–102

    Google Scholar 

  • Chen S, Wu S, Zhang D (1994) Petrologieal features of the south Mariana Trough. J Oceanogr Huanghai Bohai Seas 12(2):23–31 (in Chinese)

    Google Scholar 

  • Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110(3):265–280

    Google Scholar 

  • Danyushevsky LV, Plechov P (2011) Petrolog3: Integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12:Q07021

    Google Scholar 

  • Elliott T (2003) Tracers of the slab. Geophys Monogr-Am Geophys Union 138:23–46

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res Solid Earth 102(B7):14991–15019

    Google Scholar 

  • Fryer P, Sinton JM, Philpotts JA (1982) Basaltic glasses from the Mariana Trough. Initial Rep Deep Sea Drill Proj 60:601–609

    Google Scholar 

  • Gribble RF, Stern RJ, Bloomer SH, Stüben D, O'Hearn T, Newman S (1996) MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin. Geochim Cosmochim Acta 60(12):2153–2166

    Google Scholar 

  • Gribble RF, Stern RJ, Newman S, Bloomer SH, O'Hearn T (1998) Chemical and isotopic composition of lavas from the northern Mariana Trough: Implications for magma genesis in back-arc basins. J Petrol 39(1):125–154

    Google Scholar 

  • Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396

    Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20(4):353–431

    Google Scholar 

  • Hart SR, Glassley WE, Karig DE (1972) Basalts and sea floor spreading behind the Mariana island arc. Earth Planet Sci Lett 15:12–18

    Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, Van Calsteren P (1997) U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science 276:551–555

    Google Scholar 

  • Hawkins JW, Melchior JT (1985) Petrology of Mariana trough and Lau basin basalts. J Geophys Res 90(B01):11431–11468

    Google Scholar 

  • Hawkins JW, Lonsdale PF, Macdougall JD, Volpe AM (1990) Petrology of the axial ridge of the Mariana Trough backarc spreading center. Earth Planet Sci Lett 100:226–250

    Google Scholar 

  • Hickey-Vargas R (1998) Geochemical characteristics of oceanic island basalts from the Philippine Sea Plate: implications for the sources of East Asian Plate margin and intraplate basalts. Mantle dynamics and plate interactions in East Asia. Am Geophys Union Geodyn Ser 27:365–384

    Google Scholar 

  • Hochstaedter A, Gill J, Kusakabe M, Newman S, Pringle M, Taylor B, Fryer P (1990) Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry. Earth Planet Sci Lett 100:179–194

    Google Scholar 

  • Hussong DM, Uyeda S (1982) Tectonic processes and the history of the Mariana arc-a synthesis of the results of deep-sea drilling Project Leg-60. Initial Rep Deep Sea Drill Proj 60:909–929

    Google Scholar 

  • Hussong DM, Fryer P (1983) Back-arc seamounts and the Sea MARC II seafloor mapping system. EOS Trans Am Geophys Union 64(45):627–632

    Google Scholar 

  • Ishihara T, Yamazaki T (1991) Gravity anomalies over the Izu-Ogasawara (Bonin) and northern Mariana Arcs. Bull Geol Surv Japan 42:687–701

    Google Scholar 

  • Ishizuka O, Taylor RN, Yuasa M, Ohara Y (2011) Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea. Geochem Geophys Geosyst 12. https://doi.org/10.1029/2010GC003440

    Google Scholar 

  • Johnson M, Plank T (2000) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1. https://doi.org/10.1029/1999GC000014

    Google Scholar 

  • Karig DE, Anderson RN, Bibee LD (1978) Characteristics of back arc spreading in the Mariana Trough. J Geophys Res Solid Earth 83(B3):1213–1226

    Google Scholar 

  • Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res Solid Earth 111(B9). https://doi.org/10.1029/2005JB003732

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Google Scholar 

  • Klaus A, Taylor B, Moore GF (1992) Structural and stratigraphic evolution of Sumisu Rift, Izu-Bonin arc. In: Taylor B, Fujioka K (eds) Proceeding of the Ocean Drilling Program, Scientific results. College Station, Texas, Ocean Drilling Program, vol 126, pp 555–574

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth 92(B8):8089–8115

    Google Scholar 

  • Lai Z, Zhao G, Han Z, Huang B, Li M, Tian L, Liu B, Bu X (2016) The magma plumbing system in the Mariana Trough back-arc basin at 18°N. J Mar Syst 180:132–139

    Google Scholar 

  • Lallemand S (2016) Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction. Prog Earth Planet Sci 3:15

    Google Scholar 

  • Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278

    Google Scholar 

  • Langmuir CH, Bezos A, Escrig S, Parman SW (2006) Chemical systematics and hydrous melting of the mantle in back-arc basins. Geophys Monogr-Am Geophys Union 166:87–146

    Google Scholar 

  • Martínez F, Fryer P, Baker NA, Yamazaki T (1995) Evolution of backarc rifting: Mariana Trough, 20–24〫N. J Geophys Res Solid Earth 100(B3):3807–3827

    Google Scholar 

  • Martínez F, Fryer P, Baker NA (2000) Geophysical characteristics of the southern Mariana Trough, 11°50'N–13 ° 40'N. J Geophys Res Solid Earth 105(B7):16591–16607

    Google Scholar 

  • Martinez F, Taylor B (2000) Mantle wedge control on back-arc crustal accretion. Nature 416:417–420

    Google Scholar 

  • Mckenzie D, Bickle MJ (1988) The Volume and Composition of Melt Generated by Extension of the Lithosphere. J Petrol 29(3):625–679

    Google Scholar 

  • Meijer A (1976) Pb and Sr isotopic data bearing on the origin of volcanic rocks from the Mariana island-arc system. Geol Soc Am Bull 87(9):1358–1369

    Google Scholar 

  • Meijer A, Anthony E, Reagan M (1982) Petrology of the fore-arc sites. Initial Rep Deep Sea Drill Proj 60: 709–730

  • Michael PJ (1988) The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism. Geochim Cosmochim Acta 52(2):555–566

    Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma/igneousrock system. Earth-Sci Rev 37:215–224

    Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39(1):55–76

    Google Scholar 

  • Nebel O, Vroon PZ, van Westrenen W, Iizuka T, Davies GR (2011) The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth Planet Sci Lett 303(3):240–250

    Google Scholar 

  • Newman S, Stolper E, Stern R (2000) H2O and CO2 in magmas from the Mariana arc and back arc systems. Geochem Geophys Geosyst 1. https://doi.org/10.1029/1999GC000027

  • Niu Y, O'Hara MJ (2003) Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res-Solid Earth 108(B4). https://doi.org/10.1029/2002JB002048

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:227–244

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23(1):251–285

    Google Scholar 

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6(7). https://doi.org/10.1029/2004GC000895

    Google Scholar 

  • Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: Trace element and isotope perspectives. Geophys Monogr-Am Geophys Union 166:63–86

    Google Scholar 

  • Plank T, Langmuir CH (1993) Tracingtraceelements fromsedimentinput tovolcanic outputat subduction zones. Nature 362:739–743

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Puteanus D, Bloomer S, Wu S (1990) Cruise Report SONNE 69-Geochemical, Hydrochemical and Petrographical Investigation in the Mariana Back-arc Area under the hydrothermal aspect pp 1–231

  • Putirka KD (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochem Geophys Geosyst 6(5). https://doi.org/10.1029/2005GC000915

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29(4):275–289

    Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Google Scholar 

  • Shi X, Yan Q (2013) Magmatism of typical marginal basins (or back-arc basins) in the West Pacific. Adv Earth Science 28(7):737–750

    Google Scholar 

  • Sinton JB, Hussong DM (1983) Crustal structure of a short length transform fault in the central Mariana Trough. Am Geophysl Union Geophys Monogr Ser 27:236–254

    Google Scholar 

  • Stern RJ (2001) Subduction zones. Rev Geophys 40(4). https://doi.org/10.1029/2001RG000108

  • Stern RJ, Fouch MJ, Klemperer SL (2003) An overview of the Izu-Bonin-Mariana subduction factory. Am Geophysl Union Geophys Monogr Ser 138:175–222

    Google Scholar 

  • Stern RJ, Bloomer SH, Martinez F, Yamazaki T, Harrison TM (1996) The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: A first report. Island Arc 5:354–372

    Google Scholar 

  • Stoffers P, Wu S, Puteanus D (1989) Cruise Report SONNE 57-Mariana Back-arc, Fore-arc Region and Philippine Basin pp 1–157

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    Google Scholar 

  • Straub S (2003) The evolution of the Izu Bonin - Mariana volcanic arcs (NW Pacific) in terms of major element chemistry. Geochem Geophys Geosyst 4(2):1018

    Google Scholar 

  • Straub S, Goldstein SL, Class C, Schmidt A (2009) Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin. Nat Geosci 2:286–289

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42:313–345

    Google Scholar 

  • Taylor B, Martinez F (2003) Back-arc basin basalt systematics. Earth Planet Sci Lett 210:481–497

    Google Scholar 

  • Tian L, Zhao G, Zhao G, Shi X, Lv H (2005) Geochemistry of basaltic lavas from the Mariana Trough: evidence for influence of subduction component on the generation of backarc basin magmas. Int Geol Rev 47(4):387–397

    Google Scholar 

  • Volpe AM, Macdougall JD, Hawkins JW (1987) Mariana Trough basalts (MTB): trace element and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-like melts. Earth Planet Sci Lett 82(3):241–254

    Google Scholar 

  • Volpe AM, Macdougall JD, Lugmair GW, Hawkins JW, Lonsdale P (1990) Fine-scale isotopic variation in Mariana Trough basalts: Evidence for heterogeneity and a recycled component in back-arc basin mantle. Earth Planet Sci Lett 100:251–264

    Google Scholar 

  • Weaver JS, Langmuir CH (1990) Calculation of phase equilibrium in mineral-melt systems. Comput Geosci 16:1–19

    Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for ‘conservative’element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Google Scholar 

  • Wu S (1995) Study of Hydrothermal Chimneys in the Mariana Trough. Beijing: Ocean Press. pp 1–115 (in Chinese)

  • Wu S, Liu Y, Li Z (2001) Studies on the petrochemicaland mineralogical features in the Mariana trough hydrothermal area. J Oceanogr Huanghai Bohai Seas 19(4):22–29

    Google Scholar 

  • Wu SG, Fan JK, Dong DD (2013) Tectonic division of Philippines Sea plate tectonics. Geol Sci 48:677–692

    Google Scholar 

  • Yan QS, Castillo PR, Shi XF (2012) Geochemistry of basaltic lavas from the southern Lau basin: Input of compositionally variable seduction components. Int Geol Rev 54:1456–1474

    Google Scholar 

  • Yogodzinski GM, Vervoort JD, Brown ST, Gerseny M (2010) Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc. Earth Planet Sci Lett 300:226–238

    Google Scholar 

  • Zhang H, Yan Q, Li C, Zhu Z, Zhao R, Shi X (2018) Geochemistry of diverse lava types from the Lau Basin (South West Pacific): Implications for complex back-arc mantle dynamics. Geol J. https://doi.org/10.1002/gj.3354

  • Zhang P (2017) Petrological and geochemical studies on Mariana Trough lavas: implications for back-arc basin magmatic processes. Master Thesis, First Institute of Oceanography (MNR), China, pp 1–93

  • Zhao G, Luo W, Lai Z (2016) Influence of subduction components on magma composition in back-arc basins: a comparison between the Mariana and Okinawa troughs. Geol J 51(S1):357–367

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Philip Leat and an anonymous expert for their constructive reviews that helped to improve the manuscript. Major oxides and trace elements were determined by X-rayfluorescence (XRF) spectroscopy at the Testing Center of Shandong Bureau, China Metallurgical Geology Bureau. This work was supported by the National Programme on Global Change and Air-Sea Interaction (no. GASI-GEOGE-02); Basic Scientific Fund for National Public Research Institutes of China (2016S01); National Natural Science Foundation of China (Grants nos. 41776070, 41276003, 41322036); Taishan Scholarship from Shandong Province.; and AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology (no. 2015ASTP-ES16). IM acknowledges support from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanshu Yan or Xuefa Shi.

Additional information

Editorial handling: F. Stoppa

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Zhang, P., Metcalfe, I. et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes. Miner Petrol 113, 803–820 (2019). https://doi.org/10.1007/s00710-019-00683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00683-x

Keywords

Navigation