Skip to main content
Log in

Neoarchean Granitoids in the Western Part of the Tunguska Superterrane, Basement of the Siberian Platform: Geochronology, Petrology, and Tectonic Significance

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents data on the granitoids of the Yurubchen massif, which make up the basement of the Kamov arch, Baikit uplift in the western part of the Tunguska superterrane of the Siberian craton. Rocks of the massif were recovered by drillholes from depths of 1.8–2.0 km and occupy an area of at least 400 km2. The U–Pb (SHRIMP) zircon age, geochemistry, and isotopic features of rocks of the Yurubchen massif indicate that it comprises granitoids of two groups, which are coeval but spatially separated from one another and differ in petrogenetic characteristics. The granodiorites (2562 ± 16 Ma) have εNd(T) = + 0.9 to +2.1, contain high LREE concentrations, show highly fractionated HREE patterns (GdN/YbN = 3.4–6.2), which could be formed via partial melting of an enriched mafic source with a short crustal history at a depth of at least 45 km, in equilibrium with garnet-bearing residue. In contrast to the granodiorites, the sodic and potassic leucogranites (2563 ± 10 and 2563 ± 18 Ma, respectively) with εNd(T) from –0.3 to –1.7 and less fractionated HREE patterns (GdN/YbN = 1.7–2.3) could be produced by melting a crustal source at shallower depths. Isotopic data on the rock-forming and accessory minerals point to ca. 2.40 Ga (Rb–Sr and Sm–Nd mineral isochrones) and ca. 1.87 Ga (Ar–Ar, biotite) episodes in the postmagmatic history of the Yurubchen massif. The synchronous generation of petrogenetically different granodiorites and leucogranites may be explained by postcollisional lithosphere extension at ca. 2.56 Ga, which resulted in the melting of heterogeneous crustal material of different age at various depths. The closure of the Rb–Sr and Sm–Nd systems at ca. 2.40 Ga was probably related to the termination of the evolution of the Neoarchean collisional orogen and the cooling of the Yurubchen massif to a temperature of ca. 400°C at a depth of 7–10 km. The later episode at ca. 1.87 Ga could be related to the tectonic exhumation of the Archean rocks in the western Tunguska superterrane during the development of the Paleoproterozoic Angara belt. In terms of the stabilization of the Archean continental crust, which was marked by ca. 2.56 Ga postcollisional granitoids, the Tunguska superterrane is younger than the terranes attributed to the Archaean Vaalbara and Superia supercratons but is comparable to crustal blocks in the Slavia supercraton and, perhaps, is a tectonic fragment of this youngest Neoarchean continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Anhaeusser, C.R., Archaean greenstone belts and associated granitic rocks—a review, J. African Earth Sci., 2014, vol. 100, pp. 684–732.

    Article  Google Scholar 

  2. Annen, C., Blundy, J.D., and Sparks, R.S.J., The sources of granitic melt in deep hot zones, Trans. R. Soc. Edinb.: Earth Sci., 2008, vol. 97, pp. 297–309.

    Article  Google Scholar 

  3. Baksi, A.K., Archibald, D.A., and Farrar, E., Intercalibration of 40Ar/39Ar dating standards, Chem. Geol., 1996, vol. 129, pp. 307–324.

    Article  Google Scholar 

  4. Black, L.P., Kamo, S.L., Allen, C.M., et al., Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.

    Article  Google Scholar 

  5. Bleeker, W., The Late Archean record: a puzzle in ca. 35 pieces, Lithos, 2003, vol. 71, pp. 99–134.

    Article  Google Scholar 

  6. Bochkarev, V.S., Brekhuntsov, A.M., Lukomskaya, K.G., et al., First U-Pb (SHRIMP II) zircon data on the Late Archean age of the Siberian Platform basement, Gornye vedomosti, 2011, no. 12, pp. 6–22.

  7. Bochkarev, V.S., Brekhuntsov, A.M., Sergeev, S.A., et al., New U-Pb SHRIMP II zircon age data on the rocks of the Siberian Craton and Western Siberian Platform basement, Gornye vedomosti, 2013, no. 9, pp. 38–62.

  8. Bogdanova, S.V., Zemnaya kora Russkoi plity v rannem dokembrii (na primere Volgo-Ural’skogo segmenta) (Early Precambrian Crust of the Russian Plate: Evidence from the Volga–Uralian Segment), Moscow: Nauka, 1986.

  9. Bogdanova, S.V., Segments of the East European Craton, EUROPROBE in Jablonna 1991, Gee, D.C. and Beckholmen, M., European Science Foundation-Polish Acad. Sci., 1993, pp. 33–38.

    Google Scholar 

  10. Bogdanova, S.V., Gorbatschev, R., and Garetsky, R.G., EUROPE|East European craton, Reference Module in Earth Systems and Environmental Sciences, E. Scott, Eds., Elsevier, 2016.

    Google Scholar 

  11. Bogdanova, S.V., Belousova, E., De Waele, B., et al., Palaeoproterozoic reworking of Early Archaean lithospheric blocks: rocks and zircon records from charnockitoids in Volgo–Uralia, Precambrian Res., 2021, vol. 360, p. 106224.

    Article  Google Scholar 

  12. Condie, K.C., Earth as an Evolving Planetary System, 2nd Ed., Elsevier, 2011.

    Google Scholar 

  13. Czamanske, G.K., Wooden, J.L., Walker, R.J., et al., Geochemical, Isotopic, and SHRIMP age data for Precambrian basement rocks, Permian volcanic rocks, and sedimentary host rocks to the ore-bearing intrusions, Noril’sk–Talnakh district, Siberian Russia, Int. Geol. Rev., 2000, vol. 42, pp. 895–927.

    Article  Google Scholar 

  14. Donskaya, T.V., Paleoproterozoic Granitoid Magmatism of the Siberian Craaton, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Irkutsk: Inst. Zemn. Kory SO RAN, 2019.

  15. Donskaya, T.V., Assembly of the Siberian Craton: constraints from Paleoproterozoic granitoids, Precambrian Res., 2020, vol. 348, p. 105869.

    Article  Google Scholar 

  16. Doucet, L.S., Ionov, D.A., and Golovin, A.V., Paleoproterozoic formation age for the Siberian cratonic mantle: Hf and Nd isotope data on refractory peridotite xenoliths from the Udachnaya kimberlite, Chem. Geol., 2015, vol. 391, pp. 42–55.

    Article  Google Scholar 

  17. Eriksson, P.G. and Condie, K.C., Cratonic sedimentation regimes in the ca. 2450–2000 Ma period: relationship to a possible widespread magmatic slowdown on Earth?, Gondwana Res., 2014, vol. 25, pp. 30–47.

    Article  Google Scholar 

  18. Gao, P., Zheng, Y.-F., and Zhao, Z.-F., Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis, Lithos, 2016, vol. 266–267, pp. 133–157.

    Article  Google Scholar 

  19. Garzanti, E., Padoan, M., Setti, M., et al., Weathering geochemistry and Sr-Nd fingerprints of equatorial Upper Nile and Congo muds, Geochem. Geophys. Geosyst., 2013, vol. 14, pp. 292–316.

    Article  Google Scholar 

  20. Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., et al., The age and geodynamc interpretation of the Kitoi granitoid complex (southern Siberian Craton), Russ. Geol. Geophys., 2005, vol. 46, no. 11, pp. 1121–1133.

    Google Scholar 

  21. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., et al., Siberian Craton and its evolution in terms of Rodinia hypothesis, Episodes, 2006, vol. 29, no. 3, pp. 169–174.

    Article  Google Scholar 

  22. Glebovitsky, V.A., Khil’tova, V.Ya., and Kozakov, I.K., Tectonics of the Siberian Craton: interpretation of geological, geophysical, geochronological, and isotopic geochemical data, Geotectonics, 2008, vol. 42, no. 1, pp. 8–20.

    Article  Google Scholar 

  23. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  24. Huppert, H.E. and Sparks, R.S.J., The generation of granitic magmas by intrusion of basalt into continental crust, J. Petrol., 1988, vol. 29, pp. 599–624.

    Article  Google Scholar 

  25. Ionov, D.A., Doucet, L.S., Carlson, R.W., et al., Post-Archean formation of the lithospheric mantle in the central Siberian Craton: Re-Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite, Geochim. Cosmochim. Acta, 2015, vol. 165, pp. 466–483.

    Article  Google Scholar 

  26. Karandashev, V.K., Turanov, A.N., Orlova, T.A., et al., Application of Inductively Coupled Plasma Mass Spectrometry in element analysis of environmental objects, Zavodskaya Laboratoriya. Diagnostika Materialov, 2007, vol. 73, pp. 12–22.

    Google Scholar 

  27. Kostrovitsky, S.I., Skuzovatov, S.Y., Yakovlev, D.A., et al., Age of the Siberian Craton crust beneath the northern kimberlite fields: insights to the craton evolution, Gondwana Res., 2016, vol. 39, pp. 365–385.

    Article  Google Scholar 

  28. Kovach, V.P., Kotov, A.B., Smelov, A.P., et al., Evolutionary stages of the continental crust in the buried basement of the eastern Siberian Platform: Sm-Nd isotopic data, Petrology, 2000, vol. 8, no. 4, pp. 353–365.

    Google Scholar 

  29. Kusky, T.M., Collapse of Archean orogens and the generation of late- to postkinematic granitoids, Geology, 1993, vol. 21, pp. 925–928.

    Article  Google Scholar 

  30. Kusky, T.M. and Polat, A., Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons, Tectonophysics, 1999, vol. 305, pp. 43–73.

    Article  Google Scholar 

  31. Larin, A.M., Kotov, A.B., Velikoslavinskii, S.D., et al., Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments, Petrology, 2012, vol. 20, no. 3, pp. 218–239.

    Article  Google Scholar 

  32. Larionov, A.N., Andreichev, V.A., and Gee, D.G., The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite, The Neoproterozoic Timanide Orogen of Eastern Baltica, Gee, D.G. and Pease, V.L., Eds., London: Geol. Soc. Mem., 2004, vol. 30, pp. 69–74.

    Google Scholar 

  33. Larionova, Yu.O., Samsonov, A.V., and Shatagin, K.N., Sources of Archean sanukitoids (High-Mg subalkaline granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence, Petrology, 2007, vol. 15, no. 6, pp. 530–550.

    Article  Google Scholar 

  34. Laurent, O., Martin, H., Moyen, J.-F., and Doucelance, R., The diversity and evolution of Late-Archaean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga, Lithos, 2014, vol. 205, pp. 208–235.

    Article  Google Scholar 

  35. Ludwig, K.R., SQUID 1.12. A user’s manual. A geochronological toolkit for Microsoft Excel., Berkeley Geochronol. Center, Sp. Publ., 2005a. http://www.bgc.org/klprogrammenu.html.

  36. Ludwig, K.R., User’s manual for ISOPLOT/Ex 3.22. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center, Sp. Publ., 2005b. http://www.bgc.org/ k-lprogrammenu.html.

  37. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  38. Maulana, A., Yonezu, K., and Watanabe, K., Geochemistry of rare earth elements (ree) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia, J. Earth Sci., 2014, vol. 25, pp. 460–472.

    Article  Google Scholar 

  39. Mironyuk, E.P., Timashkov, A.N., Chukhonin, A.P., et al., Chronological studies of the Siberian Platform basement, Regional. Geol. Metallogen., 1996, no. 5, pp. 98–110.

  40. Nesbitt, H.W. and Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 1982, vol. 299, pp. 715–717.

    Article  Google Scholar 

  41. Parker, A., An index of weathering for silicate rocks, Geol. Mag., 1970, vol. 107, pp. 501–504.

    Article  Google Scholar 

  42. Pearce, J.A., Harris, N.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  43. Pearce, J.A., Sources and settings of granitic rocks, Episodes, 1996, vol. 19, pp. 120–125.

    Article  Google Scholar 

  44. Popov, N.V., Safonova, I.Yu., Postnikov, A.A., et al., Paleoproterozoic granitoids from the basement of the Central Siberian Platform (Borehole Mogdinskaya-6): U–Pb age and composition, Dokl. Earth Sci., 2015, vol. 461, no. 2, pp. 334–338.

    Article  Google Scholar 

  45. Priyatkina, N., Khudoley, A.K., Collins, W.J., et al., Detrital zircon record of Meso- and Neoproterozoic sedimentary basins in northern part of the Siberian Craton: characterizing buried crust of the basement, Precambrian Res., 2016, vol. 285, pp. 21–38.

    Article  Google Scholar 

  46. Priyatkina, N., Collins, W.J., Khudoley, A.K., et al., The Neoproterozoic evolution of the Western Siberian craton margin: U-Pb-Hf isotopic records of detrital zircons from the Yenisey Ridge and the Prisayan Uplift, Precambrian Res., 2018, vol. 305, pp. 197–217.

    Article  Google Scholar 

  47. Priyatkina, N., Ernst, RE., and Khudoley, A.K., A preliminary reassessment of the Siberian cratonic basement with new U-Pb-Hf detrital zircon data, Precambrian Res., 2020, vol. 340, p. 105645.

    Article  Google Scholar 

  48. Qian, Q. and Hermann, J., Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 1195–1224.

    Article  Google Scholar 

  49. Rosen, O.M., Condie, K.C., Natapov, L.M., and Nozhkin, A.D., Archean and Early Proterozoic evolution of the Siberian Craton: a preliminary assessment, Developments in Precambrian Geology. Volume 11. Archean Crustal Evolution, Condie, K.C., Ed., Amsterdam: Elsevier, 1994.

  50. Rosen, O.M., The Siberian Craton: tectonic zonation and stages of evolution, Geotectonics, 2003, vol. 37, no. 3, pp. 175–192.

    Google Scholar 

  51. Sal’nikova, E.B., Kotov, A.B., Levitskii, V.I., et al., Age constraints of high-temperature metamorphic events in crystalline complexes of the Irkut Block, the Sharyzhalgai Ledge of the Siberian Platform basement: results of the U–Pb single zircon dating, Stratigraphy. Geol. Correlation, 2007, vol. 15, no. 4, pp. 343–358.

    Article  Google Scholar 

  52. Smelov, A.P. and Timofeev, V.F., The age of the North Asian cratonic basement: an overview, Gondwana Res., 2007, vol. 12, pp. 279–288.

    Article  Google Scholar 

  53. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.

    Article  Google Scholar 

  54. Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, pp. 359–362.

    Article  Google Scholar 

  55. Tang, L. and Santosh, M., Neoarchean granite-greenstone belts and related ore mineralization in the north china craton: an overview, Geosci. Front., 2018, vol. 9, pp. 751–768.

    Article  Google Scholar 

  56. Tang, L., Santosh, M., Tsunogae, T., and Teng, X.-M., Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: evidence from the Fuping complex, Lithos, 2016, vol. 248-251, pp. 324–338.

    Article  Google Scholar 

  57. Topuz, G., Altherr, R., Schwarz, W.H., et al., Postcollisional plutonism with adakite-like signatures: the Eocene Saraycik Granodiorite (eastern Pontides, Turkey), Contrib. Mineral. Petrol., 2005, vol. 150, pp. 441–455.

    Article  Google Scholar 

  58. Turkina, O.M., Berezhnaya, N.G., Lepekhina, E.N., and Kapitonov, I.N., U-Pb (SHRIMP II), Lu-Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut Terrane, Sharyzhalgay Uplift: implications for the Neoarchaean evolution of the Siberian Craton, Gondwana Res., 2012, vol. 21, pp. 801–817.

    Article  Google Scholar 

  59. Turkina, O.M., Sukhorukov, V.P., and Sergeev, S.A., Mesoarchean bimodal volcanic rocks of the Onot greenstone belts, southwestern Siberian Craton: implications for magmatism in an extension/rift setting, Precambrian Res., 2020, vol. 343, p. 105731.

    Article  Google Scholar 

  60. Votintsev, A.N. and Krasil’nikova, N.B., Petroleum potential of the Siberian Platform basement within the Kama Uplift of the Baikit Anteclise, Geol. Nefti Gaza, 2019, no. 2, pp. 55–62.

  61. Wedepohl, K.H. and Hartmann, G., The composition of the primitive upper Earth’s mantle, Kimberlites, Related Rocks and Mantle Xenoliths, Meyer, H.O.A. and Leonardos, O.H., Eds., Comp. Perquisa Rec. Minerais, 1994, pp. 486–495.

  62. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  63. Wiedenbeck, M., Alle, P., Corfu, F., et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newslett., 1995, vol. 19, pp. 1–23.

    Article  Google Scholar 

  64. Williams, I.S., U-Th-Pb geochronology by ion microprobe, Applications in Microanalytical Techniques to Understanding Mineralizing Processes, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Google Scholar 

  65. Yakubchuk, A., Diamond deposits of the Siberian Craton: products of post-1200 Ma plume events affecting the lithospheric keel, Ore Geol. Rev., 2009, vol. 35, pp. 155–163.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the staff of the Department of Lithology of the Gubkin National University of Oil and Gas for help with selecting core material for this research. Special thanks are due to the reviewers T.V. Donskaya, O.M. Turkina, and N.I. Gusev for constructive criticism and valuable recommendations, which led us to improve the manuscript.

Funding

This study was supported by Russian Foundation for Basic Research, project no. 20-05-00686. The 40Ar/39Ar dating was carried out under government-financed research project for the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Samsonov.

Additional information

Translated by E. Kurydukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, A.V., Postnikov, V.V., Spiridonov, V.A. et al. Neoarchean Granitoids in the Western Part of the Tunguska Superterrane, Basement of the Siberian Platform: Geochronology, Petrology, and Tectonic Significance. Petrology 29, 449–474 (2021). https://doi.org/10.1134/S0869591121050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121050064

Keywords:

Navigation