Skip to main content
Log in

Updated COMAGMAT-5: Modeling the Effects of Sulfide Precipitation in Parallel to the Crystallization of Alumino-Chromian Spinel

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

An updated version of the COMAGMAT-5.3 program is presented, which enables simulations of the silicate-sulfide immiscibility in parallel to the crystallization of Al–Cr spinel and other rock-forming minerals. The principal changes include a completed recalibration of the previous Fe–Ni sulfide solubility model (Ariskin et al., 2013) and incorporation of equations describing spinel–melt equilibria in a wide range of magmatic systems (Nikolaev et al., 2018a, 2018b). This allowed us to more accurately specify the link between the compositions of immiscible sulfides and magma crystallization temperatures and to correct alumina partitioning between the model spinel and crystallizing melt. The updated COMAGMAT-5.3 can be used for calculations of the crystallization of basaltic to komatiitic magmas, as well as the history of solidification of mafic to ultramafic cumulates, including the relative proportions of Al–Cr spinel and immiscible sulfides. The applications are exemplified by the solidification of sulfide-bearing primitive olivine cumulate from the inner-contact zone of the Yoko-Dovyren intrusion in Northern Transbaikalia, Russia. It is established that maximum crystallization proportions of Al–Cr spinel as high as 3.5 wt% are observed at the OlSp cotectic, which is followed by an abrupt decrease to slightly negative values (because of spinel dissolution) during the crystallization of plagioclase-bearing assemblages. This results in an inflection point on the trend of spinel composition evolution, which changes from a decrease in the Cr/Al ratio in the field of olivine to its increase when plagioclase starts to crystallize. The first estimates are presented for the effect of Cr in pyroxenes on the crystallization proportion and composition of the Al–Cr spinel. A model calculation shows that this factor results in longer lasting spinel dissolution when pyroxenes start to crystallize, and the composition of this spinel is shifted toward Cr-poorer derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The bulk compositions of the sulfide globules and basalt glasses are available on request at Andrew.McNeill@stategrowth.tas.gov.au.

REFERENCES

  1. Al’meev, R.R. and Ariskin, A.A., Mineral–melt equilibria in a hydrous basaltic system: computer modeling, Geochem. Int., 1996, vol. 34, no. 7, pp. 563–573.

    Google Scholar 

  2. Al’meev, R., Holtz, F., Koepke, J., et al., Depths of partial crystallization of H2O-bearing morb: phase equilibria simulations of basalts at the mar near Ascension Island (7–11° S), J. Petrol., 2008, vol. 49, pp. 25–45.

    Article  Google Scholar 

  3. Al’meev, R.R., Ariskin, A.A., Kimura, J.-I., and Barmina, G., The role of polybaric crystallization in genesis of andesitic magmas: phase equilibria simulations of bezymianny volcanic subseries, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 182–192.

    Article  Google Scholar 

  4. Ariskin, A.A., Phase equilibria modeling in igneous petrology: use of comagmat model for simulating fractionation of ferro-basaltic magmas and the genesis of high-alumina basalt, J. Volcanol. Geotherm. Res., 1999, vol. 90, pp. 115–162.

    Article  Google Scholar 

  5. Ariskin, A.A., The compositional evolution of differentiated liquids from the Skaergaard layered series as determined by geochemical thermometry, Russ. J. Earth Sci., 2003, vol. 5, pp. 1–29.

    Article  Google Scholar 

  6. Ariskin, A.A. and Barmina, G.S., An empirical model for the calculation of spinel-melt equilibrium in mafic igneous systems at atmospheric pressure: II. Fe–Ti oxides, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 251–263.

    Article  Google Scholar 

  7. Ariskin A.A., Barmina G.S. Modelirovanie fazovykh ravnovesii pri kristallizatsii bazal’tovykh magm (Modeling Phase Equilibria during the Crystallization of Basaltic Magma), Ryabchikov, I.D, Eds., (Nauka, Moscow, 2000).

  8. Ariskin, A.A. and Barmina, G.S., Comagmat: development of a magma crystallization model and its petrologic applications, Geochem. Int., 2004, vol. 42.

  9. Ariskin, A.A. and Frenkel’, M.Ya., Computer simulation of the fractional crystallization of basic silicate melts, Geokhimiya, 1982, vol. 3, pp. 338–356.

    Google Scholar 

  10. Ariskin, A.A. and Nikolaev, G.S., An empirical model for the calculation of spinel-melt equilibrium in mafic igneous systems at atmospheric pressure: I. Chromian spinels, Contrib. Mineral. Petrol., 1996, vol. 123, pp. 282–292.

    Article  Google Scholar 

  11. Ariskin, A.A., Barmina, G.S., Frenkel, M.Ya., and Yaroshevskii, A.A., Computer simulation of low-pressure fractional crystallization of tholeiitic magmas, Geokhimiya, 1987, no. 9, pp. 1240-1259.

  12. Ariskin A.A., Frenkel M.Ya., Tsekhonya T.I. High-pressure fractional crystallization of tholeiitic magmas, Geokhimiya, 1990, vol. 27, no. 9, pp. 10–20.

    Google Scholar 

  13. Ariskin, A.A., Barmina, G.S., Frenkel, M.Ya., and Nielsen, R.L., COMAGMAT: a FORTRAN program to model magma differentiation processes, Comp. Geosci., 1993, vol. 19, pp. 1155–1170.

    Article  Google Scholar 

  14. Ariskin A.A., Barmina G.S., Ozerov A.Yu., Nil’sen R.L. Genesis of high-alumina basalts of Klyuchevskoy Volcano, Petrology, 1995, vol. 3, pp. 496–521.

    Google Scholar 

  15. Ariskin, A.A., Deutsch, A., and Ostermann, M., The Sudbury igneous complex: simulating phase equilibria and in situ differentiation for two proposed parental magmas, Geol. Soc. Amer. Sp. Pap., 1999, vol. 339, pp. 373–387.

    Google Scholar 

  16. Ariskin, A.A., Barmina, G.S., Bychkov, K.A., and Danyushevsky, L.V., Parental magmas of mafic layered intrusions: using an updated COMAGMAT model for calculations of sulfide-silicate cotectics during their crystallization, Northwest. Geol., 2009, vol. 42, pp. 1–3.

    Google Scholar 

  17. Ariskin, A.A., Danyushevsky, L.V., Bychkov, K.A., et al., Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of Ni in the melt, Econ. Geol., 2013, vol. 108, pp. 1983–2003.

    Article  Google Scholar 

  18. Ariskin, A.A., Kislov, E.V., Danyushevsky, L.V., et al., Cu–Ni–PGE fertility of the Yoko-Dovyren layered massif (northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunites based on quantitative sulfide mineralogy, Mineral. Deposita, 2016, vol. 51, pp. 993–1011.

    Article  Google Scholar 

  19. Ariskin A.A., Bychkov K.A., Nikolaev G.S. Modeling of trace-element composition of sulfide liquid in a crystallizing basalt magma: development of the R-factor concept, Geochem. Int., 2017a, vol. 55, no. 5, pp. 465–473.

    Article  Google Scholar 

  20. Ariskin, A.A., Fomin, I.S., Zharkova, E.V., etal., Redox conditions during crystallization of ultramafic and gabbroic rocks of the Yoko–Dovyren massif (based on the results of measurements of intrinsic oxygen fugacity of olivine), Geochem. Int., 2017b, vol. 55, pp. 595–607.

    Article  Google Scholar 

  21. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., and Barmina, G.S., The COMAGMAT-5: modeling the effect of Fe–Ni sulfide immiscibility in crystallizing magmas and cumulates, J. Petrol., 2018a, vol. 59, pp. 283–298.

    Article  Google Scholar 

  22. Ariskin, A., Danyushevsky, L., Nikolaev, G., et al., The Dovyren intrusive complex (southern Siberia, Russia): insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility, Lithos, 2018b, vol. 302-303, pp. 242–262.

    Article  Google Scholar 

  23. Ariskin, A.A., Nikolaev, G.S., Danyushevsky, L.V., et al., Genetic interpretation of the distribution of PGE and chalcogens in sulfide-mineralized rocks from the Yoko-Dovyren layered intrusion, Geochem. Int, 2018c, vol. 56, pp. 1322–1340.

    Article  Google Scholar 

  24. Ariskin, A.A., Barmina, G.S., Koptev-Dvornikov, E.V., et al., Intrusive COMAGMAT: from simple magma differentiation models to complex algorithms simulating the structure of layered intrusions, Advances in Geochemisyry, Analytical Chemistry, and Planetary Sciences, Kolotov, V.P. and Bezaeva, N.S., Eds., (Springer, 2023), pp. 101–119.

    Google Scholar 

  25. Baker, D.R. and Moretti, R., Modeling the solubility of sulfur in magmas: a 50-year old geochemical challenge, Rev. Mineral. Geochem., 2011, vol. 73, pp. 167–213.

    Article  Google Scholar 

  26. Barmina, G.S. and Ariskin, A.A., Estimation of chemical and phase characteristics for the initial magma of the Kiglapait Troctolite Intrusion, Labrador, Canada, Geochem. Int., 2002, vol. 40, no.10, pp. 1071–1083.

    Google Scholar 

  27. Barnes, S.J., Godel, B., Gurer, D., et al., Sulfide–olivine Fe–Ni exchange and the origin of anomalously Ni rich magmatic sulfides, Econ. Geol., 2013, vol. 108, pp. 1971–1982.

    Article  Google Scholar 

  28. Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., et al., Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite–dunite plutonic complex, Koryak Highland (Far East Russia), J. Petrol., 2005, vol. 46, pp. 1345–1366.

    Article  Google Scholar 

  29. Bonin, B., Didier, J., and Le Fort, P., Magma-Crust Interactions and Evolution: Geochemical and Geophysical Aspects of the Interactions and Evolution of Magmas and Rocks of the Crust Athens: Theophrastus Publ., 1989.

    Google Scholar 

  30. Campbell, I.H. and Naldrett, A.J., The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides, Econ. Geol., 1979, vol. 74, pp. 1503–1506.

    Article  Google Scholar 

  31. Ding, S., Dasgupta, R., and Tsuno, K., Sulfur concentration of Martian basalts at sulfide saturation at high pressures and temperatures - implications for deep sulfur cycle on mars, Geochim. Cosmochim. Acta, 2014, vol. 131, pp. 227–246.

    Article  Google Scholar 

  32. Fortin, M.-A., Riddle, J., Desjardins-Langlais, Y., and Baker, D.R., The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts, Geochim. Cosmochim. Acta, 2015, vol. 160, pp. 100–116.

    Article  Google Scholar 

  33. Frenkel, M.Ya. and Ariskin, A.A., Computer simulation of equilibrium and fractional crystallization of basaltic melts, Geokhimiya, 1984, vol. 10, pp. 1419–1431.

    Google Scholar 

  34. Frenkel, M.Ya., Yaroshevsky, A.A., Ariskin, A.A., et al., Dinamika vnutrikamernoi differentsiatsii bazitovykh magm (Dynamics of Intrachamber Differentiation of Basaltic Magmas), Moscow: Nauka, 1988.

  35. Gongalsky, B.I., Krivolutskaya N.A., Ariskin A.A., and Nikolaev, G.S., Inner structure, composition, and genesis of the Chineiskii anorthosite–gabbronorite massif, northern Transbaikalia, Geochem. Int., 2008, vol. 46, no. 7, pp. 637–665.

    Article  Google Scholar 

  36. Gongalsky, B.I., Krivolutskaya, N.A., Ariskin, A.A., and Nikolaev, G.S., The chineysky gabbronorite–anorthosite layered massif (northern Transbaikalia, Russia): its structure, Fe–Ti–V and Cu-PGE deposits, and parental magma composition, Mineral. Deposita, 2016, vol. 51, pp. 1013–1034.

    Article  Google Scholar 

  37. Jugo, P.J., Sulfur content at sulfide saturation in oxidized magmas, Geology, 2009, vol. 37, pp. 415–418.

    Article  Google Scholar 

  38. Kamenetsky, V.S., Maas, R., Fonseca, R.O., et al., Noble metals potential of sulfide-saturated melts from the subcontinental lithosphere, Geology, 2013, vol. 41, pp. 575–578.

    Article  Google Scholar 

  39. Koptev-Dvornikov, E.V., Aryaeva, N.S., and Bychkov, D.A., Equation of thermobarometer for description of sulfide–silicate liquid immiscibility in basaltic systems, Petrology, 2012, vol. 20, pp. 450–466.

    Article  Google Scholar 

  40. Krivolutskaya, N.A., Ariskin, A.A., Sluzhenikin, S.F., and Turovtsev, D.M., Geochemical thermometry of rocks of the Talnakh intrusion: assessment of the melt composition and the crystallinity of the parental magma, Petrology, 2001, vol. 9, pp. 451–479.

    Google Scholar 

  41. McNeill, A., Danyushevsky, L., Klimm, K., et al., Siqueiros transform MORB; characteristics of a S-saturated suite, Goldschmidt Conference Abstract, Mineral. Mag., 2012, vol. 76, no. 6, p. 2095.

    Google Scholar 

  42. McNeill, A.W., Danyushevsky, L.V., Ariskin, A.A., et al., The Siqueiros transform fault MORB; a tale of sulfur-saturation, Proc. 11th International Platinum Symposium, 2010, vol. 1.

  43. Moune, S., Holtz, F., and Botcharnikov, R.E., Sulphur solubility in andesitic to basaltic melts: implications for Hekla Volcano, Contrib. Mineral. Petrol., 2009, vol. 157, pp. 691–707.

    Article  Google Scholar 

  44. Nikolaev, G.S. and Ariskin, A.A., Burakovo–Aganozero layered massif in the Trans-Onega Area: II. Structure of the marginal series and the estimation of the parental magma composition by geochemical thermometry techniques, Geochem. Int., 2005, vol. 43, no. 7, pp. 646–665.

    Google Scholar 

  45. Nikolaev, G.S., Ariskin, A.A., and Barmina, G.S., SPINMELT-2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 Kbar: I. Model formulation, calibration, and tests, Geochem. Int., 2018a, vol. 56, no. 1, pp. 24–45.

    Article  Google Scholar 

  46. Nikolaev, G.S., Ariskin, A.A., and Barmina, G.S., SPINMELT‑2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 Kbar: II. Description of the program package, the topology of the Cr-spinel–melt model system, and petrological implications, Geochem. Int., 2018b, vol. 56, no. 2, pp. 125–135.

    Article  Google Scholar 

  47. Nikolaev, G.S., Ariskin, A.A., and Barmina, G.S., Numerical modeling of the effects of major elements on the solubility of chrome–spinel and a likely solution of the problem of the origin of chromitite, Dokl. Earth Sci., 2019, vol. 487, pp. 791–794.

    Article  Google Scholar 

  48. Parman, S.W., Dann, J.C., Grove, T.L., and de Wit, M.J., Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton greenstone belt, South Africa, Earth Planet. Sci. Lett., 1997, vol. 150, pp. 303–323.

    Article  Google Scholar 

  49. Poulson, S.R. and Ohmoto, H., An evaluation of the solubility of sulfide sulfur in silicate melts from experimental data and natural samples, Chem. Geol., 1990, vol. 85, pp. 57–75.

    Article  Google Scholar 

  50. Ryerson, F.J., Weed, H.C., and Piwinskii, A.J., Pheology of subliquidus magmas 1. Picritic compositions, J. Geophys. Res., 1988, vol. 93B, pp. 3421–3436.

    Article  Google Scholar 

  51. Sano, T. and Yamashita, S., Experimental petrology of basement lavas from ocean drilling program leg 192: implications for differentiation processes in Ontong Java plateau magmas, in Origin and Evolution of the Ontong Java Plateau, Geol. Soc. London: Spec. Publ., 2004, vol. 229, pp. 185–218.

    Article  Google Scholar 

  52. Tsuchiyama, A., Experimental study of olivine–melt reaction and its petrological implications, J. Volcanol. Geotherm. Res., 1986, vol. 29, pp. 245–264.

    Article  Google Scholar 

  53. Wykes, J.L., O’Neill, H.S.C., and Mavrogenes, J.A., The effect of FeO on the sulfur content at sulfide saturation (SCSS) and the selenium content at selenide saturation of silicate melts, J. Petrol., 2014, vol. 56, pp. 1407–1424.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Andrew W. McNeill (Mineral Resources Tasmania, Hobart, Australia) and Leonid V. Danyushevsky (University of Tasmania, Hobart, Australia) for providing us with data on homogenized sulfide globules from quench glasses from the Siqueiros Transform Fault, EPR, at an early stage of this research. The authors are grateful to the reviewers A.A. Borisov (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) and P.Yu. Plechov (Fersman Mineralogical Museum, Russian Academy of Sciences) for valuable comments on the manuscript.

Funding

This paper is prepared under government-financed research project “Studies of Geochemical, Cosmogonic, and Cosmochemical Processes by Means of Numerical Simulations) for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ariskin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S. et al. Updated COMAGMAT-5: Modeling the Effects of Sulfide Precipitation in Parallel to the Crystallization of Alumino-Chromian Spinel. Petrology 31, 558–575 (2023). https://doi.org/10.1134/S0869591123050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123050028

Keywords:

Navigation