Skip to main content
Log in

An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 2. Fe-Ti oxides

  • Article
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In order to develop models simulating the crystallization of Fe-Ti oxides in natural lavas, we have processed published experimental data on magnetite-melt and ilmenite-melt equilibria. These data include 62 Mt-melt and 75 Ilm-melt pairs at temperatures 1040–1150 °C, oxygen fugacities from IW to NNO+2, and bulk compositions ranging from ferrobasalts to andesites and dacites. Five major cations (Fe3+, Fe2+, Ti4+, Mg2+ and Al3+) were considered for the purpose of describing Fe-Ti oxide saturation as a function of melt composition, temperature and oxygen fugacity at 1 atmosphere pressure. The empirically calibrated mineral-melt expression based on multiple linear regressions is: ln D i = a/T + blog f O2 + c + d 1 X Na + d 2 X K + d 3 X P, where D i represents molar distribution coefficients of the given cations between Mt/Ilm and melt; X Na, X K, and X P are the molar fractions of Na, K, and P in the melt. The empirically calibrated Mt-melt and Ilm-melt equilibria equations allowed us to develop two models for calculating crystallization temperatures of the Fe-Ti oxides in the melts with an accuracy of 10–15 °C, and compositions with an accuracy of 0.5–2 mol%. These models have been integrated into the COMAGMAT-3.5 program, improving our ability to study numerically the effects of temperature and oxygen fugacity on the stability and phase equilibria of Fe-Ti oxides. Application of this approach to the tholeiitic series of Chazhma Sill from Eastern Kamchatka (Russia) indicates oxygen fugacity conditions near NNO + 0.5. Numerical simulation of fractional crystallization of an iron-enriched basaltic andesite parent at these oxidizing conditions accurately reproduces the FeO-SiO2 relations observed in the Chazhma suite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 3 March 1998 / Accepted: 7 August 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariskin, A., Barmina, G. An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 2. Fe-Ti oxides. Contrib Mineral Petrol 134, 251–263 (1999). https://doi.org/10.1007/s004100050482

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004100050482

Keywords

Navigation