Skip to main content
Log in

Late Mesozoic Carbonatite of Central Asia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Late Mesozoic carbonatites of Central Asia are developed within the Central Asian Orogenic Belt and adjacent territories of the Siberian and North China platforms. In terms of their structural position, age, geochemical characteristics, and other parameters, they differ from other carbonatite occurrences of Central Asia and are distinguished as the Late Mesozoic carbonatite province in Central Asia. The province includes separate areas of carbonatite magmatism, the geological position of which is determined by the relation with Late Mesozoic rift zones of intracontinental Asia. The carbonatites were formed within a relatively narrow time range (between 150 and 118 Ma) at the early evolution stages of these zones. The carbonatite-bearing complexes of the province are represented by subolcanic and volcanic associations of silicate rocks, carbonatites, magmatic non-silicate rocks (phosphates, sulfates, and others), as well as products of hydrothermal activity. The carbonatites are characterized by diverse composition and include calciocarbonatites, magnesiocarbonatites, and ferrocarbonatites. The silicate rocks are dominated by K–Na and K intermediate rocks. All these rocks have similar geochemical features determined by the elevated contents of LREE, Sr, Ba, and Pb, at low Nb and Ta contents. The typomorphic minerals of carbonatites of the province, in addition to carbonates, are fluorite, Ba and Sr sulfates or carbonates, LREE F-carbonates, and apatite. Unaltered carbonatites are enriched in 18О and 13С relative to mantle values, but in general fall within the compositional range of carbonatites around the world. Hydrothermal and supergene processes modified the mineral composition of carbonatites, which was accompanied by a change of the initial Sr, O, and C isotope composition. The Sr and Nd isotope composition of rocks of carbonatite complexes of the province in general depends on the age of the basement of a definite volcanic area. Carbonatites and associated silicate rocks have close isotope characteristics, but carbonatites usually show relative enrichment in (87Sr) and depletion in radiogenic neodymium (143Nd). The formation of the Late Mesozoic carbonatite province is related to the activity of mantle plumes, which controlled the Late Mesozoic magmatism in Central Asia. The plumes obviously were accompanied by fluid flows enriched in СО2, F, and S. This caused the enrichment of lithospheric mantle in volatile components, as well as REE, Sr, Ba, and K, which were extracted by a fluid en route to the surface. Subsequent melting of metasomatized mantle produced parental melts of carbonate-bearing rock complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.
Fig. 52.
Fig. 53.
Fig. 54.
Fig. 55.
Fig. 56.
Fig. 57.
Fig. 58.
Fig. 59.
Fig. 60.
Fig. 61.
Fig. 62.
Fig. 63.
Fig. 64.
Fig. 65.
Fig. 66.
Fig. 67.
Fig. 68.
Fig. 69.
Fig. 70.
Fig. 71.
Fig. 72.
Fig. 73.
Fig. 74.
Fig. 75.
Fig. 76.
Fig. 77.
Fig. 78.
Fig. 79.
Fig. 80.
Fig. 81.
Fig. 82.
Fig. 83.
Fig. 84.
Fig. 85.
Fig. 86.
Fig. 87.
Fig. 88.
Fig. 89.
Fig. 90.
Fig. 91.
Fig. 92.
Fig. 93.
Fig. 94.
Fig. 95.
Fig. 96.
Fig. 97.
Fig. 98.
Fig. 99.
Fig. 100.
Fig. 101.
Fig. 102.
Fig. 103.
Fig. 104.
Fig. 105.
Fig. 106.
Fig. 107.
Fig. 108.
Fig. 109.
Fig. 110.
Fig. 111.
Fig. 112.
Fig. 113.
Fig. 114.
Fig. 115.
Fig. 116.
Fig. 117.
Fig. 118.
Fig. 119.
Fig. 120.
Fig. 121.
Fig. 122.
Fig. 123.
Fig. 124.
Fig. 125.
Fig. 126.
Fig. 127.
Fig. 128.
Fig. 129.

REFERENCES

  1. Afonin, V.P., Gunicheva, T.N., and Piskunova L.F., Rentgenospektral’nyi flyuorestsentnyi silikatnyi analiz (X-Ray Fluorescent Silicate Analysis) Novosibirsk: Nauka, 1984.

  2. Agashev, A.M., Orikhashi, Yu., Vatanabe, T., et al., “Isotope-geochemical characteristics of kimberlites of the Siberian Platform in relation with problem of their origin,” Geol. Geofiz., 2000, vol. 41, no. 1, pp. 90–99.

    Google Scholar 

  3. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., et al., Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya, Lithos, 2013, vol. 160–161, pp. 201–215.

    Article  Google Scholar 

  4. Andreev, G.V. and Dambueva, E.A., Mieralogical-geochemical features of Sr-carbonatites of the Khalyuta deposit, Otechestvennaya Geol., 1996, no. 12, pp. 8–10.

  5. Andreev, G.V. and Khubanov, V.B., Chemical composition of major minerals of ore of the Apatitovoe deposit, Mushugai ore cluster, Mongolia, Zap. Ross. Mineral. O-va, 2005, vol. 134, no. 2, pp. 52–56.

    Google Scholar 

  6. Andreev, G.V. and Tsetsenpil, D., Geological structure and mineral composition of ores of the Apatitovoe deposit, Mushugai ore cluster, Mongolia, Otechestvennaya Geol., 1995, no. 10, pp. 39–44.

  7. Andreeva, I.A., Silicate, Silicate–Salt, and Salt Magmas of the Mushugai-Khuduk Carbonatite-Bearing Complex, South Mongolia: Melt Inclusion Data. Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Moscow: IGEM RAS, 2000.

  8. Andreeva, I.A., Naumov, V.B., Kovalenko, V.I., et al., Fluoride–sulfate and chloride–sulfate salt melts of the carbonatite-bearing complex Mushugai-Khuduk, southern Mongolia, Petrology, 1998, vol. 6, no. 3, pp. 284–292.

    Google Scholar 

  9. Andreeva, I.A., Naumov, V.B., Kovalenko, V.I., and Kononkova, N.N., The magma composition and genesis of theralite from the Mushugai Khuduk carbonatite-bearing complex in southern Mongolia, Geochem. Int., 1999, vol. 37, no. 8, pp. 735–749.

    Google Scholar 

  10. Andreeva, I.A., Kovalenko, V.I., and Naumov, V.B., Crystallization conditions, magma compositions, and genesis of silicate rocks of the Mushugai–Khuduk carbonatite–bearing alkalic complex, Southern Mongolia: evidence from melt inclusions, Petrology, 2001, vol. 9, no. 6, pp. 489–515.

    Google Scholar 

  11. Andreeva, I.A., Kovalenko, V.I., Nikiforov, A.V., and Kononkova, N.N., Compositions and formation conditions of silicate and salt magmas forming the garnet syenite porphyries (Sviatonossites) of the carbonatite-bearing Mushugai–Khuduk complex, southern Mongolia, Geochem. Int., 2004, vol. 42, pp. 497–512.

    Google Scholar 

  12. Andreeva, I.A., Kovalenko, V.I., and Kononkova, N.N., Natrocarbonatitic melts of the Bol’shaya Tagna Massif, the Eastern Sayan region, Dokl. Earth Sci., 2006, vol. 408, no. 4, pp. 542–547.

    Article  Google Scholar 

  13. Andreeva, I.A., Kovalenko, V.I., Nikiforov, A.V., and Kononkova, N.N., Compositions of magmas, formation conditions and genesis of carbonate–bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex, Eastern Sayan, Petrology, 2007, vol. 15, no. 6, pp. 551–574.

    Article  Google Scholar 

  14. Andreeva, I.A., Kovalenko, V.I., and Naumov, V.B., Silicate–salt (sulfate) liquid immiscibility: a study of melt inclusions in minerals of the Mushugai-Khuduk carbonatite-bearing complex (southern Mongolia), Acta Petrol. Sinica, 2007a, vol. 23, pp. 73–82.

    Google Scholar 

  15. Andreeva, I.A., Kovalenko, V.I., Nikiforov, A.V., and Kononkova, N.N., Compositions of magmas, formation conditions and genesis of carbonate-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex, Eastern Sayan, Petrology, 2007b, vol. 15, pp. 551–574.

    Article  Google Scholar 

  16. Antipin, V.S., Geokhimicheskaya evolyutsiya izvestkovo-shchelochnogo i shchelochnogo magmatizma (Geochemical Evolution of Calc-Alkaline and Alkaline Magmatism), Novosibirsk: Nauka, 1992.

  17. Arzamastsev, A.A., Fu-Yuan Wu, U–Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479.

    Article  Google Scholar 

  18. Atlas of Geological Maps of Asia and Adjacent Areas. International Project, Petrov, O.V., Dong Shuwen, Kiselev, E.A., and Morosov, A.F., St. Petersburg: VSEGEI Publishing House, 2016.

  19. Ayers, J., Trace element modelling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones, Contrib. Mineral. Petrol., 1998, vol. 132, pp. 390–404.

    Article  Google Scholar 

  20. Baatar, M., Ochir, G., Kynicky, J., et al., Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu alkaline complexes, southern Mongolia, Int. J. Geosci., 2013, vol. 4, pp. 1200–1214. https://doi.org/10.4236/ijg.2013.48114

    Article  Google Scholar 

  21. Bagdasarov, Yu.A., On polyformation nature of carbonatites and the volume of “carbonatite” term, Zap. Ross. Mineral. O-va, 1992, vol. 121, no. 2, pp. 110–115.

    Google Scholar 

  22. Bagdasarov, Yu.A., Metallogeny of carbonatite complexes of Russia, Metallogeniya magmaticheskikh kompleksov vnutriplitovykh geodinamicheskikh obstanovok (Metallogeny of Magmatic Complexes of Within-Plate Geodynamic Settings), Moscow: GEOS, 2001, pp. 128–506.

    Google Scholar 

  23. Bagdasarov, Yu.A., Phosphate–rare metal carbonatites of the Belaya Zima Massif (Eastern Sayan, Russia), Geol. Ore Deposits, 2002, vol. 44, no. 2, pp. 132–141.

    Google Scholar 

  24. Bagdasarov, Yu.A., On “new type” of carbonatite-like rocks and limitation of “carbonatite” term, Otechestvennaya Geol., 2006, no. 1, pp. 83–85.

  25. Le Bas, M.J., Nephelinites and carbonatites, in Alkaline Igneous Rocks, Geol. Soc. Spec. Publ., 1987, vol. 30, pp. 53–83.

    Google Scholar 

  26. Le Bas, M., Le Maitre, R., Streckeisen, A., and Zanettin, B., A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 1986, vol. 27, pp. 745–750.

    Article  Google Scholar 

  27. Baskina, V.A. and Volchanskaya, I.K., New type of rare-earth mineralization in South Mongolia related to alkaline volcanic rocks, Dokl. Akad. Nauk SSSR, 1976, vol. 228, no. 3, pp. 670–672.

    Google Scholar 

  28. Baskina, V.A., Volchanskaya, I.K., Kovalenko, V.I., et al., Potassic alkaline volcanoplutonic complex of the Mushugai-Khuduk on southern Mongolian People Republic and related mineralization, Sov. Geol., 1978, no. 4, pp. 86–99.

  29. Bazhenov, M.L., Kozlovsky, A.M., Yarmolyuk, V.V., et al., Late Paleozoic paleomagnetism of South Mongolia: Exploring relationships between Siberia, Mongolia and North China, Gondwana Res., 2016, vol. 40, pp. 124–141. https://doi.org/10.1016/j.gr.2016.09.002

    Article  Google Scholar 

  30. Bell, K. and Blenkinsop, J., Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity, Geology, 1987, vol. 15, pp. 99–102.

    Article  Google Scholar 

  31. Bell, K. and Blenkinsop, J., Neodymium and strontium isotope geochemistry of carbonatites, Carbonatites: Genesis and Evolution, K. Bell, Eds., London: Unwin Hyman, 1989, pp. 278–300.

    Google Scholar 

  32. Belov, S.V., Lapin, A.V., Tolstov, A.V., and Frolov, A.A., Minerageniya platformennogo magmatizma (trappy, karbonatity, kimberlity) (Metallogeny of Platform Magmatism: Traps, Carbonaites, and Kimberlites), Novosibirsk: Izd-vo SO RAN, 2008.

  33. Bolonin A.V., Nikiforov A.V. Chemical composition of carbonatite minerals in Karasug deposit, Tuva, Geol. Ore Deposits, 2004, vol. 46, no. 5, pp. 372–386.

    Google Scholar 

  34. Bolonin, A.V. and Nikiforov, A.V., Intermediate sulfates in barite–celestite isomorphic series: composition and mode of occurrence, Geol. Ore Deposits, 2014, vol. 56, no. 4, pp. 302–314.

    Article  Google Scholar 

  35. Bolonin, A.V. and Zhukov, F.I., Carbon, oxygen, and sulfur isotope composition of carbonatites of deposit in South Siberia, Izv. Vyssh. Ucheb. Zaved. Geol. Razved., 1983, no. 9, pp. 67–72.

  36. Bolonin, A.V., Nikiforov, A.V., Lykhin, D.A., and Sugorakova, A.M., The Chailag–Khem fluorite–barium–strontium rare earth carbonatite occurrence, the Western Sayan Range, Russia, Geol. Ore Deposits, 2009, vol. 51, no. 1, pp. 17–32.

    Article  Google Scholar 

  37. Borisenko, A.S., Borovikov, A.A., Vasyukova, E.A., et al., Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation, Russ. Geol. Geophys., 2011, vol. 52, no. 1, pp. 144–164.

    Article  Google Scholar 

  38. Boyarko, G.Yu. and Khat’kov, V.Yu., Niobium mining in Russia, Izv. Tomsk. Politekhn. Univ., 2004, vol. 307, no. 1, pp. 149–153. http://earchive.tpu.ru/handle/11683/228.

  39. Bragin, V.Y., Reutsky, V.N., Litasov, K.D., Malkovets, V.G., Travin, A.V., and Mitrokhin, D.V., Paleomagnetism and Ar40/Ar39-dating of Late Mesozoic volcanic pipes of Minusinsk Depression (Russia), Phys. Chem. Earth (A), 1999, vol. 24, no. 6, pp. 545—549 (1999). https://doi.org/10.1016/S1464-1895(99)00070-8

  40. Brögger, W.C., Die eruptivgesteine des kristianiagebietes. IV. Das fengebiet in Telemark, Norwegen, Norske Videnskaps-Academi. Skrifter I. Matematisk-Naturvidenskapelig Klasse, 1920, vol. 9, p. 408. https://doi.org/10.1017/S0016756800105217

    Article  Google Scholar 

  41. Brooker, R.A. and Kjarsgaard, B.A., Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis, J. Petrol., 2011, vol. 52, pp. 1281–1305.

    Article  Google Scholar 

  42. Bulakh, A.G. and Ivanikov, V.V., Problemy mineralogii i petrologii karbonatitov (Mineralogical and Petrological Problems of Carbonatites), Leningrad: LGU, 1984.

  43. Bulakh, A.G., Ivanikov, V.V., and Orlova, M.P., Overview of carbonatite–phoscorite complexes of the Kola Alkaline province in the context of a Scandinavian North Atlantic alkaline province, Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province. Mineral. Soc. Ser., London: Mineralogical Society, 2004, vol. 10.

    Google Scholar 

  44. Bulnaev, K.B., Conditions of formation and localization of fluorine–rare-earth mineralization, Geol. Rudn. Mestorozhd., 1985, vol. 27, no. 2, pp. 28–38.

    Google Scholar 

  45. Bulnaev, K.B., Strontianite carbonatites of the Khalyuta Deposit (Western Transbaikal Region, Russia), Geol. Ore Deposits, 1996, vol. 38, no. 5, pp. 390–400.

    Google Scholar 

  46. Bulnaev, K.B., Dikes and mineralization in the ore fields of epithermal fluorite deposits of Transbaikalia and Mongolia, Tikhookean. Geol., 2006, vol. 25, no. 6, pp. 40–50.

    Google Scholar 

  47. Bulnaev, K.B. and Posokhov, V.F., Isotope-geochemical data on the nature and age of endogenous carbonatite rocks of Transbaikalia, Geochem. Int., 1995, no. 2. S. 189-195.

  48. Bulnaev, K.B., Andreev, G.V., Posokhov, V.F., Rb–Sr age of alkaline-mafic rocks at the fault-zone Khalyuta carbonatite deposit, Western Transbaikal Region, Dokl. Earth Sci., 1999, vol. 364, no. 1, pp. 15–17.

    Google Scholar 

  49. Burkhard, A., Baryt-celestin und ihre mischkristalle aus schweizer Alpen und Jura, Schweiz. Mineral. Petrogr. Mitt., 1978, vol. 58, pp. 1–96.

    Google Scholar 

  50. Carbonatite Volcanism of Oldoynio Lengai and the Petrogenesis of Natrocarbonatites, Bell, K. and Keller, J., Eds., New York–Berlin: Springer-Verlag–Heidelberg, 1995.

  51. Chakhmouradian, A.R. and Mitchell, R.H., Niobian ilmenite, hydroxylapatite and sulfur-rich monazite: alternative hosts for incompatible elements in calcite kimberlite from internatsional’naya, Yakutia, Can. Mineral., 1999, vol. 37, pp. 1177–1189.

    Google Scholar 

  52. Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., et al., Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance, Lithos, 2017, vol. 274–275, pp. 188–213.

    Article  Google Scholar 

  53. Chakhmouradian, A.R., Reguir, E.P., Couëslan, C., and Yang, P., Calcite and dolomite in intrusive carbonatites. II. Trace-element variations, Mineral. Petrol., 2015, vol. 110, pp. 361–377.

    Article  Google Scholar 

  54. Chebotarev D.A., Doroshkevich A.G., Sharygin V.V., et al., Geochronology of the Chuktukon carbonatite massif, Chadobets Uplift (Krasnoyarsk krai), Russ. Geol. Geophys., 2017, vol. 58, no. 10, pp. 1221–1231.

    Article  Google Scholar 

  55. Chen, Z.G., Zhang, L.C., Zhou, X.H., et al., Geochronology and geochemical characteristics of volcanic rocks section in Manzhouli Xinyouqi, Inner-Mongolia, Acta Petrol. Sinica, 2006, vol. 12, pp. 2971–2986.

    Google Scholar 

  56. Cheng, Xu., Linjun, Wang., Wenlei, Song., and Min, Wu., Carbonatites in China: a review for genesis and mineralization, Geosci. Front., 2010, vol. 1, pp. 105–114.

    Article  Google Scholar 

  57. Chernyshev, I.V., Serdyuk, N.I., Zhuravlev, D.Z., et al., Precision strontium isotope analysis using monofilament ionization mode, Mass-spektrometriya i izotopnaya geologiya (Mass-Spectrometry and Isotope Geology), Moscow: Nauka, 1983, pp. 30–43.

    Google Scholar 

  58. Chu, M.F., Wang, K.L., Griffin, W.L., et al., Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids, J. Petrol., 2009, vol. 50, pp. 1829–1855.

    Article  Google Scholar 

  59. Codillo, E.A., Le Roux, V., and Marschall, H.R., Arc-like magmas generated by melange-peridotite interaction in the mantle wedge, Nat. Commun., 2018, vol. 9, p. 2864.

    Article  Google Scholar 

  60. Conway, C.M. and Taylor, H.P., 18O/16O and 13C/12C ratios of coexisting minerals in the Oka and Magnet Cove carbonatite bodies, J. Geol., 1969, vol. 77, no. 5, pp. 618–626.

    Article  Google Scholar 

  61. Daines, P., The carbon and oxygen isotopic composition of carbonatites from the Oka carbonatite complex, Quebec, Canada, Geochim. Cosmochim. Acta, 1970, vol. 34, no. 11, pp. 1199–1225.

    Article  Google Scholar 

  62. Daines, P., Stable isotope variation in carbonatites, Carbonatites: Genesis and Evolution, Bell, K., Eds., London: Unwin Hyman, 1989, pp. 301–359.

    Google Scholar 

  63. Dasgupta, R., Mallik, A., Tsuno, K., et al., Carbon–dioxide-rich silicate melt in the Earth’s upper mantle, Nature, 2013, vol. 493, pp. 211–215.

    Article  Google Scholar 

  64. Davis, G.A., Yadong, Z., Cong, W., et al., Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China, Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation, Hendrix, M. and Davis, G., Eds., Geol. Soc. Am. Mem., 2001, vol. 194, pp. 171–197.

    Google Scholar 

  65. Dawson, J.B., Sodium carbonatite lavas from Oldoiny Lengai, Tanganyika, Nature, 1962, vol. 195, pp. 1075–1076.

    Article  Google Scholar 

  66. Dickin, A.P., Radiogenic Isotope Geology, New York: Cambridge University Press, 2005.

    Book  Google Scholar 

  67. Digital Files for Northeast Asia Geodynamics, Mineral Deposit Location, and Metallogenic Belt Maps, Stratigraphic Columns, Descriptions of Map Units, and Descriptions of Metallogenic Belts, U.S, Nokleberg, W.J., Badarch, G., Berzin, N.A., et al., Eds., U.S. Geol. Surv. Open–File Report, 2004, no. 1252.

  68. Didenko, A.N., Kaplun, V.B., Malyshev, Yu.F., et al., Glubinnoe stroenie i metallogeniya Vostochnoi Azii (Deep-Seated Structure and Metallogeny of East Asia), Vladivostok: Dal’nauka, 2010.

  69. Dobretsov, N.L. and Shatskiy, A.F., Deep carbon cycle and geodynamics: the role of the core and carbonatite melts in the lower mantle, Russ. Geol. Geophys., 2012, vol. 53, no. 11, pp. 1117–1132.

    Article  Google Scholar 

  70. Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., and Zhmodik, S.M., A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu–Ni–PGE and rare-metal ore deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924.

    Article  Google Scholar 

  71. Dorfman, M.D., Sivtsov, A.V., and Tsepin, A.I., First find of coronodite in Mongolia, Novye dannye o mineralakh (New Data on Minerals), Moscow: Nauka, 1989, vol. 36, pp. 135–139.

    Google Scholar 

  72. Doroshkevich, A.G., Petrology of Carbonatite and Carbonate-Bearing Alkaline Complexes of West Transbaikalia. Doctoral (Geol.-Min.) Dissertation, Ulan-Ude, 2013.

  73. Doroshkevich, A.G. and Ripp, G.S., Isotopic systematics of the rocks of the Khalyuta carbonatite complex of Western Transbaikalia, Geochem. Int., 2009, vol. 47, no. 12, pp. 1198–1211.

    Article  Google Scholar 

  74. Doroshkevich, A.G., Ripp, G.S., Viladkar, S.G., and Vladykin, N.V., The Arshan REE carbonatites, southwestern Transbaikalia: mineralogy, paragenesis and evolution, Can. Mineral., 2008, vol. 46, pp. 807–824.

    Article  Google Scholar 

  75. Doroshkevich, A.G., Ripp, G.S., and Moore, K.R., Genesis of the Khaluta alkaline basic Ba–Sr carbonatite complex (West Transbaikala, Russia), Mineral. Petrol., 2010, vol. 98, pp. 245–268.

    Article  Google Scholar 

  76. Doroshkevich, A.G., Ripp, G.S., Vladykin, N.V., and Savatenkov, V.M., Sources of the Late Riphean carbonatite magmatism of Northern Transbaikalia: Geochemical and isotope–geochemical data, Geochem. Int., 2011, vol. 49, no. 12, pp. 1195–1207.

    Article  Google Scholar 

  77. Egorov, L.S., Iiolit-karbonatitovyi magmatism (Ijolite–Carbonatite Magmatism), Leningrad: Nedra, 1991.

  78. Enkhbayar, D., Seo, J., Choi, S.G., et al., Mineral chemistry of REE-rich apatite and sulfur-rich monazite from the Mushgai Khudag, alkaline volcanic-plutonic complex, South Mongolia, Int. J. Geosci., 2016, vol. 7, pp. 20–31.

    Article  Google Scholar 

  79. Epshtein, E.M., Geologo-petrologicheskaya model' i geneticheskie osobennosti rudonosnykh karbonatitovykh kompleksov (Geological–Petrological Model and Genetic Features of Ore-Bearing Carbonatite Complexes), Moscow: Nedra, 1994.

  80. Eremeev, N.V., Vulkano-plutonicheskie kompleksy kalievykh shchelochnykh porod (Volcanoplutonic Complexes of Potassic Alkaline Rocks), Moscow: Nauka, 1984.

  81. Ernst, R.E., Large Igneous Provinces, Cambridge: Cambridge University Press, 2014.

    Book  Google Scholar 

  82. Ernst, R.E. and Bell, R., Large igneous provinces (LIPs) and carbonatites, Mineral. Petrol., 2010, vol. 98, pp. 55–76.

    Article  Google Scholar 

  83. Fan, H.R., Lan, T.G., Hu, F.F., and Yang, K.F., Genesis of the Weishan LREE deposit in the Shandong Province, eastern China: evidences from Rb-Sr isochron age, LA-MC-ICPMS Nd isotopic composition and fluid inclusion, 30th Int. Conf. “Ore Potential of Alkaline, Kimberlite and Carbonatite Magmatism”, Antalya, Turkey, 2014, p. 59.

  84. Fitton, J.G. and Godard, M., Origin and evolution of magmas on the Ontong Java plateau, Geol. Soc. London: Spec. Publ., 2004, vol. 229, pp. 151–178.

    Article  Google Scholar 

  85. Frolov, A.A., Struktura i orudenenie karbonatitovykh massivov (Structure and Mineralization of Carbonatite Massifs), Moscow: Nedra. 1975.

  86. Frolov, A.A., Tolstov, A.V., and Belov, S.V., Karbonatitovye mestorozhdeniya Rossii (Carbonatite Deposits of Russia), Moscow: NIA-Priroda, 2003.

    Google Scholar 

  87. Frolov, A.A., Tolstov, A.V., Lapin, A.V., et al., Karbonatity i kimberlity (vzaimootnosheniya, minerageniya, prognoz) (Carbonatites and Kimberlites: Relationships, Metallogeny, and Prediction), Moscow: “NIA-Priroda”, 2005.

  88. Geodinamika, magmatism, i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of East Russia), Khanchuk, A.I, Eds., Vladivostok: Dal’nauka, 2006.

  89. Geologicheskaya karta Tuvinskoi ASSR masshtaba 1 : 500000 (Geological Map of the Tuva ASSR on a Scale 1 : 500000), Podkamennyi, A.A. and Shermana, M.L., St. Petersburg: VSEGEI, Krasnoyarskoe PGO “Krasnoyarskgeologiya”, IGiG SO RAS, 1983.

  90. Geologiya SSSR. Tuvinskaya ASSR. Chast’ 1. Geologicheskoe opisanie (Geology of the USSR. Tuva ASSR. Part 1. Geological Description), Kudryavtsev, G.A., Kuznetsov, V.A., Sidorenko, A.V., Eds., Moscow: Nedra, 1966, vol. 29.

    Google Scholar 

  91. Gerel, O., Munkhtengel, A., Enkhtuvshin, H., and Batbold, D., Petrology and geochemistry of the Mushgai Khudag volcanic-plutonic complex, Geology, 2001, vol. 4, pp. 51–58.

    Google Scholar 

  92. Gilder, S.A., Keller, G.R., Luo, M., and Goodell, P.C., Eastern Asia and the Westem Pacific. Timing and spatial distribution of rifting in China, Tectonophysics, 1991, vol. 197, pp. 225–243.

    Article  Google Scholar 

  93. Ginzburg, A.I. and Samoilov, V.S., On Problem of carbonatites, Zap. Vsesoyuz. Mineral. O-va, 1983, vol. 112, no. 2, pp. 164–176.

    Google Scholar 

  94. Gittins, J. and Harmer, R.E., What is ferrocarbonatite? A revised classification, J. Afr. Earth Sci., 1997, vol. 25, pp. 159–168.

    Article  Google Scholar 

  95. Gittins, J. and Jago, B.C., Differentiation of natrocarbonatite magma at Oldoinyo Lengai Volcano, Tanzania, Mineral Mag., 1998, vol. 62, pp. 759–768.

    Article  Google Scholar 

  96. Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., et al., Signature of Precambrian extension events in the southern Siberian craton, Russ. Geol. Geophys., 2007, vol. 48, no. 1, pp. 17–31.

    Article  Google Scholar 

  97. Gordienko, I.V., Klimuk, V.S., and Jun Han, Upper Amur volcanoplutonic belt of East Asia, Geol. Geofiz., 2000, vol. 41, no. 12, pp. 1655–169.

    Google Scholar 

  98. Gordienko, I.V., Minina, O.R., Vetluzhskikh, L.I., et al., Hentei–Dauria fold system of the Mongolia–Okhotsk belt: magmatism, sedimentogenesis, and gedynamics, Geodynam. Tectonophys., 2018, vol. 9, no. 3, pp. 1063–1097. https://doi.org/10.5800/GT-2018-9-3-0384

    Article  Google Scholar 

  99. Goryachev, A.V., Eruption of Oldoinyo Lengai, Priroda, 1968, no. 7, pp. 86–92.

  100. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Altae-Sayanskaya List M-46—Kyzyl. Ob”yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Altai-Sayan Series. Sheet M-46—Kyzyl. Explanatory Note), St. Petersburg: Kartograf. Fabrika VSEGEI, 2008.

  101. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Altae-Sayanskaya. List N-46—Abakan. Ob”yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Altai-Sayan Series. Sheet N-46—Abakan. Explanatory Note), St. Petersburg: Kartograf. Fabrika VSEGEI, 2008.

  102. Grassi, D. and Schmidt, M.W., The melting of carbonated pelites from 70 to 700 km depth, J. Petrol., 2011, vol. 52, pp. 765–789.

    Article  Google Scholar 

  103. Grebennikov, A.V., A-type granites and related rocks: problems of identification, petrogenesis, and classification, Russ. Geol. Geophys., 2014, vol. 55, no. 9, pp. 1074–1086.

    Article  Google Scholar 

  104. Guo, F., Fan, W., Wang, Y., and Lin, Ge., Geochemistry of Late Mesozoic mafic magmatism in West Shandong Province, eastern China: characterizing the lost lithospheric mantle beneath the north china block, Geochem. J., 2003, vol. 37, pp. 63–77. https://doi.org/10.2343/geochemj.37.63

    Article  Google Scholar 

  105. Gusev, G.S. and Khain, V.E., Relations of the Baikal—Vitim, Aldan-Stanovoy, and Mongol—Okhotsk terranes, southern Middle Siberia, Geotektonika, 1995, no. 5, pp. 68–82.

  106. Halama, R., Vennemann, T., Siebel, W., and Markl, G., The Gronnedal-ika carbonatite–syenite complex, south Greenland: carbonatite formation by liquid immiscibility, J. Petrol., 2005, vol. 46, pp. 191–217.

    Article  Google Scholar 

  107. Hart, S.R., Gerlach, D.C., and White, W.M., A possible new Sr–Nd–Pb mantle array and consequences for mantle mixing, Geochim. Cosmochim. Acta, 1986, vol. 54, pp. 1551–1557.

    Article  Google Scholar 

  108. Hou, Z., Tian, S., Yuan, Z., et al., The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication, Earth Planet. Sci. Lett., 2006, vol. 244, pp. 234–250.

    Article  Google Scholar 

  109. Ibragimova, E.K., Rad’kov, A.V., Molchanov, A.V., et al., Results of U-Pb (SHRIMP II) isotope dating of zircons from dunite from the Inagli massif (Aldan shield) and the problem of genesis of concentrically-zoned complexes, Regional. Geol. Metallogen., 2015, no. 62, pp. 64–78.

  110. Igneous Rocks: A Classification and Glossary of Terms, Le Maitre, R.W., Eds., Cambridge: Cambridge University Press, 2002.

  111. Ikemoto, A. and Iwamori, H., Numerical modeling of trace element transportation in subduction zones: implications for geofluid processes, Earth Planet. Sp., 2014, vol. 66, p. 26. http://www.earth-planets-space.com/content/66/1/26.

    Google Scholar 

  112. Ionov, D.A.,Dupuy, C., O’Reilly, S., et al., Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism, Earth Planet. Sci. Lett., 1993, vol. 119, pp. 283–297.

    Article  Google Scholar 

  113. Isakova, A.T., Panina, L.I., and Stoppa, F., Genesis of kalsilite melilitite at Cupaello, Central Italy: evidence from melt inclusions, Petrology, 2017, vol. 25, no. 4, pp. 433–448.

    Article  Google Scholar 

  114. Ivanov, A.V., Gorovoy, V.A., Gladkochub, D.P., et al., The first precise data on the age of charoite mineralization (Eastern Siberia, Russia), Dokl. Earth Sci., 2018, vol. 478, no. 2, pp. 179–182.

    Article  Google Scholar 

  115. Ivanov, V.G., Yarmolyuk, V.V., and Smirnov, V.N., New data on the age of volcanism in West-Zabaikalian Late Mesozoic–Cenozoic volcanic domain, Dokl. Akad. Nauk, 1995, vol. 345, pp. 648–652.

    Google Scholar 

  116. Jahn, B.M., Wu, F.Y., and Lo, C.H., Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie Complex, central China, Chem. Geol., 1999, vol. 157, pp. 119–146.

    Article  Google Scholar 

  117. Jaireth, S., Dean, M., Hoatson, D.M., and Miezitis, Y., Geological setting and resources of the major rare-earth-element deposits in Australia, Ore Geol. Rev., 2014, vol. 62, pp. 72–128.

    Article  Google Scholar 

  118. Liu, J., Zhang, H., Sun, J., and Ye, J., Geochemical research on C-O and Sr-Nd isotopes of mantle-derived rocks from Shandong Province, China Sci. Ser. D Earth Sci., 2004, vol. 47, no. 2, pp. 171–180.

  119. Jones, A.P., Genge, M., and Carmody, L., Carbonate melts and carbonatites reviews in mineralogy, Geochemistry, 2013, vol. 75, pp. 289–322.

    Google Scholar 

  120. Kalt, A., Hegner, E., and Satir, M., Nd, Sr, and Pb isotopic evidence for diverse lithospheric mantle sources of East African rift carbonatites, Tectonophysics, 1997, vol. 278, pp. 31–45.

    Article  Google Scholar 

  121. Kelemen, P.B., Hanghoj, K., and Greene, A.R., One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust, Treatise of Geochemistry, Oxford: Elsevier, 2003, vol. 3.

    Google Scholar 

  122. Keller, J. and Hoefs, J., Stable isotope characteristics of recent natrocrbonatites from Oldoinyo Lengai, Carbonatite Volcanism of Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites, Bell, K. and Keller, J., New York: Springer-Verlag, 1995.

    Google Scholar 

  123. Khomichev, V.L., Edintsev, E.S., and Kuzhel’naya, E.V., Etalon khemchikskogo gabbro-montsodiorit-sienogranitovogo kompleksa (Zapadnyi Sayan) (Standard of Chemical Gabbro-Monzodiorite—Syenogranite Complex, Western Sayan), Novosibirsk, 2000.

  124. Khomyakov, A.P. and Semenov, E.I., Gidrotermal’nye mestorozhdeniya ftorkarbonatov redkikh zemel’ (Hydrothermal Deposits of REE Fluorcarbonates), Moscow: Nauka, 1971.

  125. Kiseeva, E.S., Litasov, K.D., Yaxley, G.M., Ohtani, E., and Kamenetsky, V.S., Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle, J. Petrol., 2013, vol. 54, pp. 1555–1583.

    Article  Google Scholar 

  126. Kjarsgaard, B.A. and Hamilton, D.L., The genesis of carbonatites by immiscibility, Carbonatites: Genesis and Evolution, Bell, K., Eds., London: Unwin Hyman, 1989, pp. 388–409.

    Google Scholar 

  127. Klein-BenDavid, O., Logvinova, A.M., Schrauder, M., et al., High-Mg carbonatitic microinclusions in some Yakutian diamond—a ew type of diamond-forming fluid, Lithos, 2009, vol. 112, pp. 649–659.

  128. Klein-BenDavid, O., Pearson, D.G., Nowell, G.M., et al., The sources and time-integrated evoluton of diamond-forming fluids—trace elements and isotopic evidence, Geochim. Cosmochim. Acta, 2014, vol. 125, pp. 146–169.

  129. Kochetkov, A.Ya., Mesozoic gold bearing ore magmatic systems of Central Aldan, Russ. Geol. Geophys., 2006a, vol. 47, no. 7, pp. 850–864.

    Google Scholar 

  130. Kochetkov, A.Ya., Ore potential of alkaline massifs of the Aldan shield. Ryabinovsky copper–gold–porphyry deposit, Tikhookean. Geol., 2006b, vol. 25, no. 1, pp. 62-73.

    Google Scholar 

  131. Kochnev, B.B., Pokrovsky, B.G., Kuznetsov, A.B., and Marusin, V.V., C and Sr isotope chemostratigraphy of Vendian–Lower Cambrian carbonate sequences in the Central Siberian Platform, Russ. Geol. Geophys., 2018, vol. 59, no. 6, pp. 585–605.

    Article  Google Scholar 

  132. Kogarko, L.N., The role of global fluids in the genesis of mantle heterogeneities and alkaline magmatism, Russ. Geol. Geophys., 2005, vol. 46, no. 12, pp. 1213–1224.

    Google Scholar 

  133. Kogarko, L.N., Alkaline magmatism and enriched mantle reservoirs: mechanisms, time, and depth of formation, Geochem. Int., 2006, vol. 44, no. 1, pp. 3–10.

    Article  Google Scholar 

  134. Kogarko L.N., Henderson M., and Foland K., The Guli ultrabasic alkaline massif in Polar Siberia: evolution and isotope sources, Dokl. Earth Sci., 1999, vol. 364, no. 1, pp. 88–90.

    Google Scholar 

  135. Kogarko, L.N. and Zartman, R.E., New data on the age of the Guli intrusion and implications for the relationships between alkaline magmatism in the Maymecha–Kotuy Province and the Siberian Superplume: U–Th–Pb isotopic systematics, Geochem. Int., 2011, vol. 49, no. 5, pp. 439–448.

    Article  Google Scholar 

  136. Kogarko, L.N., Kononova, V.A., Orlova, M.P., and Woolley, A.R., Alkaline Rocks and Carbonatites of the World. Part 2: Former USSR, London: Chapman & Hall, 1991.

    Google Scholar 

  137. Kogarko, L.N., Henderson, C.M.B., and Pacheco, H., Primary Ca-rich carbonatite magma and carbonate–silicate–sulphide liquid immiscibility in the upper mantle, Contrib. Mineral. Petrol., 1995, vol. 121, pp. 267–274.

    Article  Google Scholar 

  138. Konev, A. A., Vorob’ev, E.I., and Lazebnik, K.A., Mineralogiya Murunskogo shchelochnogo massiva (Mineralogy of the Murun Alkaline Massif), Novosibirsk: Izd-vo SO RAN NITs OIGGM, 1996.

  139. Kostitsyn, Yu.A., Terrestrial and chondritic Sm-Nd and Lu-Hf isotopic systems: are they identical?, Petrology, 2004, vol. 12, no. 5, pp. 397–411.

    Google Scholar 

  140. Kostyuk, V.P., Panina, L.I. Zhidkov, A.Ya., et al., Kalievyi shchelochnoi magmatizm Baikalo-Stanovoi riftovoi sistemy (Potassic Alkaline Magmatism of the Baikal–Stanovoy Rift System), Novosibirsk: Nauka, 1990.

  141. Kotel’nikov, A.R., Kabalov, Yu.K, Zezyulya, T.N., et al., Experimental study of celestite–barite solid solution, Geochem. Int., 2000, vol. 38, no. 12. S. 1181-1187.

    Google Scholar 

  142. Kotov, A.B., Sal’nikova, E.B., Glebovitsky, V.A., et al., Sm–Nd Isotopic Provinces of the Aldan Shield, Dolk. Earth Sci., 2006, vol. 410, no. 7, pp. 1066–1069.

    Google Scholar 

  143. Kovach, V.P., Kotov, A.B., Berezkin, V.I., et al., Age limits of high-grade metamorphic supracrustal complexes in the Central Aldan Shield: Sm–Nd Isotopic Data, Stratigraphy. Geol. Correlation, 1999, vol. 7, no. 1. pp. 1–14.

    Google Scholar 

  144. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic position of mantle rocks of the Strel’tsovskaya Caldera (Eastern Transbaikalia), mantle domains of Central Asia and China, Vestn. KRAUNTs. Ser: Nauki o Zemle, 2015, vol. 28, no. 4, pp. 24–39.

  145. Kovalenko, V.I., Samoilov, V.S., and Ivanov, V.G., New Khotogors massif of high-K alkaline magmatic rocks in the Gobi desert (MPR), Dokl. Akad. Nauk SSSR, 1986, vol. 287, no. 4, pp. 952–955.

    Google Scholar 

  146. Kovalenko V.I., Yarmolyuk V.V., Bogatikov O.A. Recent volcanism in relation to plate interacton and deep-level geodynamics, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 939–951.

    Article  Google Scholar 

  147. Kramm, U., Mantle components of carbonatites from the Kola alkaline province, Russia and Finland: a Nd-Sr study, Eur. J. Mineral., 1993, vol. 5, pp. 985–989.

    Article  Google Scholar 

  148. Kramm, U. and Kogarko, L.N., Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola alkaline province, Russia, Lithos, 1994, vol. 32, pp. 225–242.

    Article  Google Scholar 

  149. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  150. Kukharenko, A.A., Orlova, M.P., Bullakh, A.G., et al., Kaledonskii kompleks ul’traosnovnykh, shchelochnykh porod i karbonatitov Kol’skogo poluostrova i Severnoi Karelii (Caledonian Complex of Ultrabasic Alkalina Rocks and Carbonatites of the Kola Peninsula and North Karelia), Moscow: Nedra, 1965.

  151. Kuleshov, V.N., Izotopnyi sostav i proiskhozhdenie glubinnykh karbonatitov (Isotope Composition and Origin of Deep-Seated Carbonatites), Moscow.: Nauka, 1986.

  152. Kuleshov, V.N. and Pervov, V.A., Carbon and oxygen isotope composition of apatite—calcite rocks of the Ulugei-Khid area, Izv. AN SSSR, Ser. Geol., 1982, no. 10, pp. 44–51.

  153. Kuzmin, M.I., Yarmolyuk, V.V., and Kravchinsky, V.A., Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province, Earth-Sci. Rev., 2010, vol. 102, nos. 1–2, pp. 29–59.

    Article  Google Scholar 

  154. Larin, A.M., Rapakivi granites in the geological history of the earth. Part 1. Magmatic associations with rapakivi granites: Age, geochemistry, and tectonic setting, Stratigraphy. Geol. Correlation, 2009, vol. 17, no. 3. pp. 235–258.

    Article  Google Scholar 

  155. Larin, A.M., Kotov, A.B., Vladykin, N.V., et al., Rare metal granites of the Katugin complex (Aldan Shield): sources and geodynamic formation settings, Dokl. Earth Sci. 2015, vol. 464, no. 1, pp. 889–893.

    Article  Google Scholar 

  156. Larin, A., M., Kotov A.B., Sal’nikova E.B., et al., Kalar Complex, Aldan–Stanovoi shield, an ancient anorthosite–mangerite–charnockite–granite association: geochronologic, geochemical, and isotopic-geochemical characteristics, Petrology, 2006, vol. 14, pp. 2–20.

    Article  Google Scholar 

  157. Larson, R.L. and Olson, P., Mantle plumes control magnetic reversal frequency, Earth Planet. Sci. Lett., 1991, vol. 107, nos. 3–4, pp. 437–447.

    Article  Google Scholar 

  158. Lazareva, E.V., Zhmodik, S.M., Tolstov, A.V., et al., Main minerals of abnormally high-grade ores of the tomtor deposit (arctic siberia), Russ. Geol. Geophys., 2015, vol. 56, no. 6, pp. 844–873.

    Article  Google Scholar 

  159. Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambrian Res., 2008, vol. 160, pp. 179–210.

    Article  Google Scholar 

  160. Li, X.H., Liu, Y., Li, Q.L., et al., Precise determination of phanerozoic zircon pb/pb age by multi-collector sims without external standardization, Geochem., Geophys., Geosyst., 2009, vol. 10, p. Q04010. https://doi.org/10.1029/2009GC002400

    Article  Google Scholar 

  161. Li, Z.X. and Zhong, Sh., Supercontinent-superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics, Phys. Earth Planet. Inter., 2009, vol. 176, pp. 143–156.

    Article  Google Scholar 

  162. Li, X.H., Tang, G.Q., Gong, B., et al., Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes, Chinese Sci. Bull., 2013, vol. 58, pp. 4647–4654.

    Article  Google Scholar 

  163. Liang Ma, Shao-Yong Jiang, Ming-Lan Hou, et al., Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: implication for lithospheric evolution of the eastern North China Craton, Gondwana Res., 2014, vol. 25, pp. 859–872. https://doi.org/10.1016/j.gr.2013.05.012

    Article  Google Scholar 

  164. Linnen, R., Trueman, D.L., Burt, R., Tantalum and niobium, In: Critical Metals Handbook, Gus Gunn, Ed., John Wiley & Sons, 2014. https://doi.org/10.1002/9781118755341.ch15

    Book  Google Scholar 

  165. Litasov, K.D., Physicochemical conditions for melting in the Earth’s mantle containing a C–O–H fluid (from experimental data), Russ. Geol. Geophys., 2011, vol. 52, no. 5, pp. 475–492.

    Article  Google Scholar 

  166. Litasov, K.D. and Ohtani, E., Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths, Phys. Earth Planet. Inter., 2009, vol. 177, pp. 46–58.

    Article  Google Scholar 

  167. Litasov, K.D. and Ohtani, E., The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32 GPa and carbonatite liquid in the deep mantle, Earth Planet. Sci. Lett., 2010, vol. 295, pp. 115–126.

    Article  Google Scholar 

  168. Litasov, K.D., Shatskiy, A., Ohtani, E., and Yaxley, G.M., Solidus of alkaline carbonatite in the deep mantle, Geology, 2013, vol. 41, pp. 79–82.

    Article  Google Scholar 

  169. Litvin, Yu.A., The physicochemical conditions of diamond formation in the mantle matter: experimental studies, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 1188–1200.

    Article  Google Scholar 

  170. Litvinovskii B.A., Yarmolyuk V.V., Zanvilevich A.N., et al., Sources of material and genesis of granitic pegmatites of the Oshurkovskii alkaline monzonite massif, Transbaikalia, Geochem. Int., 2005, vol. 43, no. 12, pp. 1149–1167.

    Google Scholar 

  171. Litvinovsky, B.A., Zanvilevich, A.N., Posokhov, V.F., Vrublevskaya, T.T., New data on the structure and time of formation of the Oshurkovsky massif of alkaline gabbro and syenite, (Transbaikalia), Russ. Geol. Geophys., 1998, vol. 39, no. 6, pp. 730–744.

    Google Scholar 

  172. Lodders, K., Solar system abundances and condensation temperatures of the elements, Astrophys. J., 2003, vol. 591, pp. 1220–1247.

    Article  Google Scholar 

  173. Ludwig, K.R., ISOPLOT/Ex.Version 2.49. A geochronological toolkit for Microsoft Excel, Berkley Geochronol. Center Sp. Publ., 2001, no. 1a.

  174. Ludwig, K.R., PbDat for MS-DOS, version 1.21, U.S. Geol. Surv., 1991, Open-File Report no. 88–542.

  175. Luhr, J.F., Primary igneous anhydrite: progress since its recognition in the 1982 El Chichon trachyandesite, J. Volcanol. Geotherm. Res., 2008, vol. 175, pp. 394–407.

    Article  Google Scholar 

  176. Maksimov, E.P., Mesozoic ring magmatic complexes of the Aldan shield, Izv. AN SSSR, Ser. Geol., 1972, no.3, pp. 33–45.

  177. Maximov, E.P., Uyutov V.I., Nikitin, V.M., The central Aldan gold–uranium ore magmatogenic system, Aldan–Stanovoy shield, Russia, Russ. J. Pac. Geol., 2010, vol. 4, no. 2, pp. 95–111.

    Article  Google Scholar 

  178. Maksimov, Ye.P., Mesozoic annular magmatic complexes in Aldan shield, Int. Geol. Rev., 1973, vol. 15, no. 1, pp. 120–132.

    Article  Google Scholar 

  179. Mal’kovets, V.G., Composition and Structure of Mesozoic Upper Mantle beneath the North Minusinsk Depression: evidence from study of mantle xenoliths from alkaline basaltic explosion pipes, Candidate’s (Geol.-Min.) Dissertation in Geology and Mineralogy, Novosibirsk, 2001.

  180. Malkovets, V.G., Litasov, Yu.D., Travin, A.V., et al., Volcanic pipes as clues to upper mantle petrogenesis: Mesozoic Ar-Ar dating of the Minusinsk basalts, South Siberia, Int. Geol. Rev., 2003, vol. 45, pp. 133–142.

    Article  Google Scholar 

  181. Maniar, P.D. and Piccolli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  182. Manning, C.E., The chemistry of subduction-zone fluids, Earth Planet. Sci. Lett., 2004, vol. 223, pp. 1–16.

    Article  Google Scholar 

  183. Marakushev, A.A. and Suk, N.I., Carbonate–silicate magmatic immiscibility and carbonatite genesis, Dokl. Earth Sci., 1998, vol. 360, no. 5, pp. 696–699.

    Google Scholar 

  184. Maruyama, S., Santosh, M., and Zhao, D., Superplume, supercontinent, and postperovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary, Gondwana Res., 2007, vol. 11, nos. 1–2, pp. 7–37.

    Article  Google Scholar 

  185. McDonough, W.F., Compositional model for the Earth’s core, The Mantle and Core, Oxford, 2003, vol. 2, pp. 547–568.

    Google Scholar 

  186. Meng, E., Xu, W.L., Yang, D.B., et al., Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan Basin in Manzhouli area, and its tectonic implications, Acta Petrol. Sinica, 2011, vol. 27, pp. 1209–1226.

    Google Scholar 

  187. Mitchell, R.H. and Krouse, H.R., Sulfur isotope geochemistry of carbonatites, Geochim. Cosmochim. Acta, 1975, vol. 39, no. 11, pp. 1505–1513.

    Article  Google Scholar 

  188. Mitchell, R.H., Carbonatites and carbonatites and carbonatites, Can. Mineral., 2005, vol. 43, pp. 2049–2068.

    Article  Google Scholar 

  189. Mitchell, R. and Gittins, J., Carbonatites and carbothermalites: a revised classification, Lithos, 2020, vol. 430-43, p. 1106861. https://doi.org/10.1016/j.lithos.2022.106861

  190. Mitropol’skii, A.S., Hydrothermal complex iron ore deposits, in Zhelezorudnye mestorozhdeniya Altae-Sayanskoi gornoi oblasti (Iron Ore Deposits of the Altai–Sayan Mountainous Area), Moscow: Izd-vo AN SSSR, 1959, vol. 1, book 2. pp. 498–511.

  191. Mordvinova, V.V., Treusov, A.V., Turutanov, E.Kh., Nature of the mantle plume under Hangai (Mongolia) based on seismic and gravimetric data, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 92–95.

    Article  Google Scholar 

  192. Munkhtsengel, B., Gerel, O., Jindrich, K., et al., Some notes on the Lugiin Gol, Mushgai Khudag, and Bayan Khoshuu alkaline complexes, southern Mongolia, Int. J. Geosci., 2013, vol. 4, pp. 1200–1214. https://doi.org/10.4236/ijg.2013.48114

    Article  Google Scholar 

  193. Nelson, D.R., Chivas, A.R., Chappell, B.W., and McCulloch, M.T., Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1–17. https://doi.org/10.1016/0016-7037(88)90051-8

    Article  Google Scholar 

  194. Nickel, E.H. and Grice, J.D., The IMA commission on new minerals and mineral names: procedures and guidelines on mineral nomenclature, Can. Mineral., 1998, vol. 36, pp. 913–926.

    Google Scholar 

  195. Nikiforov, A.V., Bolonin, A.V., Pokrovsky, B.G., et al., Isotope geochemistry (O, C, S, Sr) and Rb–Sr age of carbonatites in Central Tuva, Geol. Ore Deposits, 2006, vol. 48, no. 4, pp. 256–276.

    Article  Google Scholar 

  196. Nikiforov A.V., Bolonin A.V., Sugorakova A.M., et al., Carbonatites of Central Tuva: geological structure and mineral and chemical composition, Geol. Ore Deposits, 2005, vol. 47, no. 4, pp. 326–348.

    Google Scholar 

  197. Nikiforov, A.V., Yarmolyuk, V.V., Kovalenko, V.I., et al., Late Mesozoic carbonatites of western Transbaikalia: Isotopic–geochemical characteristics and sources, Petrology, 2002, vol. 10, no. 2, pp. 146–164.

    Google Scholar 

  198. Nikiforov A.V., Yarmolyuk V.V., Pokrovsky, B.G., et al., Isotopic Composition of Oxygen, Carbon, and Sulfur in Rocks from the Khalyuta Volcanic Carbonatite Complex, the Western Transbaikal Region Dokl. AN. 1998, vol. 363A, no. 9, pp. 1311–1314.

  199. Nikiforov, A.V., Yarmolyuk, V.V., Pokrovsky, B.G., et al., Mesozoic carbonatites of western Transbaikalia: Mineralogical, chemical, and isotopic (O, C, S, and Sr) characteristics and relationships to alkaline magmatism, Petrology, 2000, vol. 8, no. 3, pp. 278–302.

    Google Scholar 

  200. Nikiforov, A.V. and Yarmolyuk, V.V., Late mesozoic carbonatite provinces in central asia: their compositions, sources and genetic settings, Gondwana Res., 2019, vol. 69, pp. 56–72.

    Article  Google Scholar 

  201. Nikolenko, A.M., Redina, A.A., Doroshkevich, A.G., et al., The origin of magnetite-apatite rocks of mushgai-khudag complex, south mongolia: mineral chemistry and studies of melt and fluid inclusions, Lithos, 2018, vol. 320–321, pp. 567–582. https://doi.org/10.1016/j.lithos.2018.08.030

    Article  Google Scholar 

  202. Nikolenko, A.M., Doroshkevich, A.G., Ponomarchuk, A.V., et al., Ar-Ar geochronology and petrogenesis of the Mushgai–Khudag alkaline–carbonatite complex (southern Mongolia), Lithos, 2020, vol. 372–373, p. 105675. https://doi.org/10.1016/j.lithos.2020.105675

    Article  Google Scholar 

  203. Ontoev, D.O., Some geological problems of fluorine–rare-earth–iron ore deposits, Geol. Rudn. Mestorozhd.,1963, vol. 5, no. 6, pp. 18–33.

    Google Scholar 

  204. Ontoev, D.O., Chemistry of rock alteration and formation of fluorine–rare-earth–iron ores, Geol. Rudn. Mestorozhd.,1966, vol. 8, no. 4, pp. 66–83.

    Google Scholar 

  205. Ontoev, D.O., Geologiya kompleksnykh redkozemel’nykh mestorozhdenii (Geology of Complex Rare-Earth Deposits), Moscow: Nedra, 1984.

  206. Ontoev, D.O., Luvsandanzan, B., Guidsambuu, Ts., Geological structure and endogenous mineralization of the Mushugai fluorine–rare-earth deposit (Mongolia), Geol. Rudn. Mestorozhd., 1979, no. 3. S. 27–42.

  207. Orlova, M.P., New data on geology of the Malyi Murun alkaline massif (southwestern Yakutia), Sov. Geologiya, 1987, no. 9, pp. 83–92.

  208. Orlova, M.P., Petrochemical features of the Malyi Murun alkaline massif (southwestern Yakutia), Izv. AN SSSR, Ser. Geol., 1988, no.10, pp. 15–27.

  209. Pan, Y. and Fleet, M.E., Compositions of the Apatite-Group Minerals: Subtitution Mechanisms and Controlling Factors, Rev. Mineral. Geochem., 2002, vol. 48, pp. 13–49. https://doi.org/10.2138/rmg.2002.48.2

    Article  Google Scholar 

  210. Panina, L.I. and Isakova, A.T., Djerfisherite in monticellite rocks of the Krestovskaya Intrusion (Polar Siberia), Petrology, 2019, vol. 27, no. 2, pp. 171–185.

    Article  Google Scholar 

  211. Panina, L.I. and Motorina, L.M., Alkaline high-ca sulfate–carbonate melt inclusions in melilite–monticellite–olivine rocks from the Malomurunskii alkaline massif, Aldan, Petrology, 1999, vol. 7, no. 6, pp. 610–625.

    Google Scholar 

  212. Panina, L.I. and Motorina, I.V., Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts, Geochem. Int., 2008, vol. 46, no. 5, pp. 448–464.

    Article  Google Scholar 

  213. Panina, L.I., Motorina, I.V., Sharygin, V.V., Vladykin, N.V., Biotite pyroxenites and melilite–monticellite–olivine rocks of the Malyi Murun alkaline massif, Geol. Geofiz., 1989, no. 12, pp. 41–51.

  214. Panina, L.I., Rokosova, E.Yu., Isakova, A.T., and Tolstov, A.V., Lamprophyres of the Tomtor Massif: a result of mixing between potassic and sodic alkaline mafic magmas, Petrology, 2016, vol. 24, no. 6, pp. 608–625.

    Article  Google Scholar 

  215. Panina, L.I. and Usol’tseva, L.M., Role of liquid immiscibility in the formation of calcite carbonatites of the Malyi Murun massif (Aldan), Russ. Geol. Geophys., 2000, vol. 41, no. 5, pp. 655–670.

    Google Scholar 

  216. Panina, L.I. and Vladykin, N.V., Lamproites of the Murun massif and their genesis, Geol. Geofiz., 1994, vol. 35, no. 12, pp. 100–113.

    Google Scholar 

  217. Pearson, D.G. Nowell, G.M., et al., The sources and time-integrated evolution of diamond-forming fluids - trace elements and isotopic evidence, Geochim. Cosmochim. Acta, 2014, vol. 125, pp. 146–169.

    Article  Google Scholar 

  218. Peate, D.W., The Parana–Etendeka province, Coffin Large Igneous Provinces: Continental, Oceanic, and Planetary Flood volcanism, Mahoney, J.J. and Millard, F., Geophys. Monograph Ser., 1997, vol. 100, pp. 217–245.

    Google Scholar 

  219. Peccerillo, A. and Taylor, S.R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Nothern Turkey, Contrib. Mineral. Petrol., 1976, vol. 58, no. 1, pp. 63–81.

    Article  Google Scholar 

  220. Pervov, V.A. and Kononova, V.A., Rock-forming minerals of magnesian andesites of the Shadoron depression, Southeastern Transbaikalia, in Osobennosti porodoobrazuyushchikh mineralov magmaticheskikh porod (Peculiarities of Rock-Forming Minerals of Magmatic Rocks), Moscow: Nauka, 1986, pp. 126–138.

  221. Pervov, V.A., Kononova, V.A., and Arakelyants, M.M., Age of some alkaline massifs of the Gobi desert, Izv. Akad. Nauk SSSR. Ser. Geol., no. 5. 1980, pp. 24–32.

  222. Pervov, V.A., Laputina, I.P., and Barklaeva, I.F., Late Jurassic volcanogenic rocks of the Ulugei-Khid area (Mongoli) and some genetic questions, Izv. Akad. Nauk SSSR. Ser. Geol., 1983, no. 11, pp. 40–53.

  223. Petrograficheskii slovar’ (Glossary of Geology), Moscow: Nedra, 1981.

  224. Plank, T., Constraints from Th/La on sediment recycling at subduction zones and the evolution of the continents, J. Petrol., 2005, vol. 46, pp. 921–944.

    Article  Google Scholar 

  225. Platov, V.S., Tereshchenkov, A.A. Savchenko, S.M., et al., Ob"yasnitel’naya zapiska k Gosudarstvennoi geologicheskoi karte Rossiiskoi Federatsii masshtaba 1 : 200 000 po listu M-48-VI Selenginskoi serii (Explanatory Note to the State Geological Map of the Russian Federation on a Scale 1 : 200 000. Sheet M-48-VI. Selenga Series), 2nd Edition (Moscow, 2000).

  226. Podgornykh, N.M., Melt inclusions in carbonatite minerals of the Belaya Zima massif, Dokl. Akad. Nauk SSSR, 1975, vol. 223, no. 6, pp. 1447–1450.

    Google Scholar 

  227. Podgornykh, N.M., Conditions of Mineral Formationin the Carbonatite Complexes of Eastern Sayan. Extended Abstract of Candidate’s (Geol.-Min.) Dissertation (Novosibirsk, 1981).

  228. Pokhilenko, N.P., Agashev, A.M., Litasov, K.D., and Pokhilenko, L.N., Carbonatite metasomaism of peridotite lithospheric mantle: implications for diamond formation and carbonatite–kimberlite magmatism, Russ. Geol. Geophys., 2015, vol. 56, nos. 1–2, pp. 280–295.

    Article  Google Scholar 

  229. Pokrovsky, B.G., Korovaya kontaminatsiya mantiinykh magm po dannym izotopnoi geokhimii (Crustal Contamination of Mantle Magmas: Evidence from Isotope Geochemistry), Moscow: MAIK Nauka, 2000.

  230. Pokrovskii B.G., Melezhik V.A., Bujakaite, M.I., Carbon, Oxygen, Strontium, and Sulfur Isotopic Compositions in Late Precambrian Rocks of the Patom Complex, Central Siberia: Communication 1. Results, Isotope Stratigraphy, and Dating Problems Lithol. Mineral. Resour., 2006, vol. 41, no. 5, pp. 450–474.

    Google Scholar 

  231. Polin, V.F., Glebovitskii, V.A., Mitsuk, V.V., et al., Two-stage formation of the alkaline volcanoplutonic complexes in the Ketkap-Yuna ineous province of the Aldan shield: new isotope data, Dokl. Earth Sci., 2014, vol. 459, no. 1, pp. 1322–1327.

    Article  Google Scholar 

  232. Ponomarchuk, A.V., Prokop’ev, I.R., and Borisenko, A.S., Ar/Ar and U-Pb geochronology of the Ingali massif, Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu) (Geodynamic Evolution of Lithosphere of the Central Asian Orogenic Belt (from Ocean to Continent), 2016, vol. 14, pp. 228–229.

    Google Scholar 

  233. Popov, V.A., Mongush, A.A., and Ayunova, O.D., Ancient mining-metallurgical production in the Tuva history and its traces in the traditional culture, Sostoyanie i osvoenie prirodnykh resursov Tuvy i sopredel’nykh regionov Tsentral’noi Azii. Geoekologiya prirodnoi sredy i obshchestva (State and Development of Natural Resources of Tuva and Adjacent Regions of Central Asia. Geoecology of Natural Environment and Community), 2008, vol. 9, pp. 208–226.

    Google Scholar 

  234. Popov. V.A., Mongush. A.A., and Ayunova. O.D., Mining-metallurgical production in ancient Tuva (preliminary result of works of 2004), Sostoyanie i osvoenie prirodnykh resursov Tuvy i sopredel’nykh regionov Tsentral’noi Azii. Geoekologiya prirodnoi sredy i obshchestva (State and Development of Natural Resources of Tuva and Adajcent Regions of Central Asia. Geoecology of Natural Environment and Commnity), Kyzyl: TuvIKOPR SO RAN, 2005, vol. 8, pp. 108–122.

    Google Scholar 

  235. Pozharitskaya, L.K., Frolov, A.A., Epshtein, E.M., Prospecting criteria of rare-metal carbonatites, Geologiya mestorozhdenii redkikh elementov (Geology of Rare-Metal Deposits), 1961, vol. 14, pp. 115–130.

  236. Pozharitskaya, L.K. and Samoilov, V.S., Petrologiya, mineralogiya i geokhimiya karbonatitov Vostochnoi Sibiri (Petrology, Mineralogy, and Geochemistry of Carbonatites of East Siberia), Moscow: Nauka, 1972.

  237. Prokof’ev, V.Yu. and Vorob’ev, E.I., P-T conditions of formation of the Sr–Ba carbonatites, charoites, and torgolites of Murunsky alkaline massif (Eastern Siberia), Geokhimiya, 1991, no. 10, pp. 1444–1452.

  238. Prokop’ev, I.R., Borovikov, A.A., Pavlova, G.G., and Borisenko, A.S., The Role of Chloride–Carbonate Melts in the Formation of Sideritic Carbonatites of the Karasug Fe–F–REE Deposit (Tyva Republic, Russia), Dokl. Earth Sci., 2014, vol. 455, no. 5, pp. 446–449.

    Article  Google Scholar 

  239. Prokopyev, I.R., Borisenko, A.S., Borovikov, A.A., and Pavlova, G.G., Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions, Mineral. Petrol., 2016, vol. 110, pp. 845–859.

    Article  Google Scholar 

  240. Rare Earth and Critical Elements in Ore Deposits, Eds. Verplanck P.L. and Hitzman, M.W., Rev. Econ. Geol., 2016, vol. 18.

    Google Scholar 

  241. Rass, I.T., Melilite rocks in the alkaline-ultrabasic complexes of the northwestern Siberia: petrochemistry, geochemistry, and origin, Geochem. Int., 2000, vol. 38, no.10, pp. 1003–1012.

    Google Scholar 

  242. Rass, I.T. and Plechov, P.Yu., Melt inclusions in olivines from the olivine–melilitite rock of the Guli Massif, northwestern Siberian Platform, Dokl. Earth Sci., 2000, vol. 375, no. 3, pp. 1399–1402.

    Google Scholar 

  243. Redina, A.A., Nikolenko, A.M., Doroshkevich, A.G., et al., Conditions for the crystallization of fluorite in the mushgai-khudag complex (southern mongolia): evidence from trace element geochemistry and fluid inclusions, Geochemistry, 2020, vol. 80, no. 4, 125666. https://doi.org/10.1016/j.chemer.2020.125666

    Article  Google Scholar 

  244. Ripp, G. S., Karmanov, N. S., Kanakin, S. V., Doroshkevich, A.G., and Andreev, G.V., Cerium britolite of the Mushugai deposit (Mongolia), Zap. Ross. Mineral. O-va, 2005, vol. 134, no. 2, pp. 90–103.

    Google Scholar 

  245. Ripp, G.S., Doroshkevich, A.G., Posokhov, V.F., Age of carbonatite magmatism in Transbaikalia, Petrology, 2009, vol. 17, no. 1, pp. 73–89.

    Article  Google Scholar 

  246. Ripp, G.S., Izbrodin, I.A., Doroshkevich, A.G., et al., Chronology of the formation of the gabbro–syenite–granite series of the Oshurkovo Pluton, Western Transbaikalia, Petrology, 2013, vol. 21, no. 4, pp. 375–392.

    Article  Google Scholar 

  247. Ripp, G.S., Khodanovich, P.Yu., Smirnova, O.K., and Kobylkina, O.V., Khalyutinskoe mestorozhdenie barii-strontsievykh karbonatitov (Khalyuta Barium—Strontium Carbonatite Deposit), Ulan-Ude: BNTs, 1998.

  248. Ripp, G.S., Kobylkina, O.V., Doroshkevich, A.G., and Sharakshinov, A.O., Pozdnemezozoiskie karbonatity Zapadnogo Zabaikal’ya (Late Mesozoic Carbonatites of Western Transbaikalia), Ulan-Ude: Izd-vo BNTs SO RAN, 2000.

  249. Romanova, A.E., Vernikovskaya, V.A., Vernikovsky, N.Yu., et al., Neopropterozoic alkaline magmatism and associated igneous rocks in the western framing of the Siberian Craton: petrography, geochemistry, and geochronology, Russ. Geol. Geophys., 2012, vol. 53, no. 11, pp. 1176–1196.

    Article  Google Scholar 

  250. Ronkin, Yu.L., Efimov, A.A., Lepikhina, G.A., et al., U–Pb dating of the baddeleytte–zircon system from Pt-bearing dunite of the Konder Massif, Aldan Shield: new data, Dokl. Earth Sci., 2013, vol. 450, no. 5, pp. 607–612.

    Article  Google Scholar 

  251. Ruzhentsev, S.V. and Nekrasov, G.E., Tectonics of the Aga Zone, Mongolia–Okhotsk Belt, Geotectonics, 2009, vol. 42, no. 1, pp. 34–50.

    Article  Google Scholar 

  252. Ryabchikov, I.D. and Kogarko, L.N., Deep differentiation of alkali ultramafic magmas: formation of carbonatite melts, Geochem. Int., 2016, vol. 54, no. 9, pp. 739–747.

    Article  Google Scholar 

  253. Ryabchikov, I.D., Kogarko, L.N., and Solovova, I.P., Physicochemical conditions of magma formation at the base of the Siberian Plume: insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha–Kotui province, Petrology, 2009, vol. 17, no. 3, pp. 287–299.

    Article  Google Scholar 

  254. Ryabchikov, I.D., Solovova, I.P., Kogarko, L.N., et al., Thermodynamic parameters of generation of meymechites and alkaline picrites in the Maymecha–Kotui Province: evidence from melt inclusions, Geochem. Int., 2002, no. 11, pp. 1031–1041.

  255. Sal’nikova, E.B., Kovach, V.P., Kotov, A.B., and Nemchin, A.A., Evolution of continental crust in the western Aldan Shield: evidence from Sm–Nd systematics of granitoids, Petrology, 1996, vol. 4, no. 2. S. 105–118.

    Google Scholar 

  256. Sal’nikova, E.B., Yakovleva, S.Z., Nikiforov, A.V., et al., Bastnaesite: a promising U–Pb geochronological tool, Dokl. Earth Sci., 2010, vol. 430, no. 1, pp. 134–136.

    Article  Google Scholar 

  257. Salomons, W., The oxygen isotopic composition of the fraction less than 2 microns (clay fraction) in recent sediments from western Euorope, J. Sediment. Petrol, 1975, vol. 45, no. 2, pp. 440–449.

    Google Scholar 

  258. Samoilov, V.S., Karbonatity (Carbonatites), Moscow: Nauka, 1977.

    Google Scholar 

  259. Samoilov, V.S., Geokhimiya karbonatitov (Geochemistry of Carbonatites), Moscow: Nauka, 1984.

  260. Samoilov, V.S., Ivanov, V.G., Kovalenko, V.I., and Smirnova, E.V., Rare-earth–apatite and rare-earth lead ores of the Mushugai-Khuduk complex (Southern Mongolia), Endogennye Rudnye Formatsii Mongolii (Endogenous Ore Formations of Mongolia), Tr. Sovmest. Sov.-Mongol. Nauchn-Issled. Eksp., Moscow: Nauka, 1984, vol. 38, pp. 180–199.

    Google Scholar 

  261. Samoilov, V.S. and Kovalenko, V.I., Kompleksy shchelochnykh porod i karbonatitov Mongolii (Complex of Alkaline Rocks and Carbonatites of Mongolia), Moscow: Nauka, 1983.

  262. Samoilov, V.S., Kovalenko, V.I., Sengee, D., et al., Structure, composition and genesis of one rare-meatl deposit of Mongolia, Geol. Rudn. Mestorozhd., 1988, no. 2, pp. 62–74

  263. Savatenkov, V.M., Yarmolyuk, V.V., Kudryashova, E.A., Kozlovsky, A.M., Sources and geodynamics of the Late Cenozoic volcanism of Central Mongolia: evidence from isotope-geochemical studies, Petrology, 2010, vol. 18, no. 3. S. 278–307.

    Article  Google Scholar 

  264. Schrauder, M. and Navon, O., Hydrous and carbonatitic fluids in fibrous diamonds from Jwaneng, Botswana, Geochim. Cosmochim. Acta, 1994, vol. 58, p. 761.

    Article  Google Scholar 

  265. Shabashev, V.Ya. and Nikiforov, A.V., Alkaline anhydrite-bearing syenites of the Oshurkovo massif (Western Transbaikalia), Geosfer. Issled., 2019, no. 3, pp. 50–68. https://doi.org/10.17223/25421379/12/5

  266. Sharygin, I.S., Litasov, K.D., Shatskiy, A., et al., Melting phase relations of the udachnaya-east group i kimberlite at 3.0–6.5 GPa: experimental evidence for alkali carbonatite composition of primary kimberlite melt and implication to mantle plumes, Gondwana Res., 2015, vol. 28.

  267. Sklyarov, E.V., Fedorovskii, V.S., Kotov, A.B., Carbonatites in collisional settings and pseudo-carbonatites of the Early Paleozoic Ol’khon collisional system, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 1091–1106.

    Article  Google Scholar 

  268. Sobotovich, E.V. and Semenenko, V.P., Veshchestvo meteoritov (Meteorite Matter), Kiev: Naukova Dumka, 1984.

  269. Sokolov, S.V. Sidorenko, G.A. Chukanov, N.V., Chistyakova, N.I. On benstonite and benstonite carbonatites, Geochem. Int., 2001, vol. 39, no. 12, pp. 1218–1229

    Google Scholar 

  270. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.

    Article  Google Scholar 

  271. Stolper, E. and Newman, S., The role of water in the petrogenesis of Mariana trough basalts, Earth Planet. Sci. Lett., 1994, vol. 121, pp. 293– 325.

    Article  Google Scholar 

  272. Sugorakova, A.M. and Nikiforov, A.V., Mafic magmatism of the Early Devonian Tuva rifting trough, Geosf. Isled., 2016, no. 1, pp. 85–103.

  273. Suk, N.I., Experimental study of liquid immiscibility in silicate–carbonate systems, Petrology, 2001, vol. 9, no. 5, pp. 477–488.

    Google Scholar 

  274. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and progresses, in Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. London, Spec. Publ., 1989, vol. 42, pp. 313–345.

  275. Syritso, L.F., Badanina, E.V., Volkova, E.V., et al., Volcanoplutonic association of felsic rocks in the rare-metal ore units of Transbaikalia: geochemistry of rocks and melts, age, and P-T conditions of their crystallization, Petrology, 2012, vol. 20, pp. 567–592.

    Article  Google Scholar 

  276. Taylor, B.E., Magmatic volatiles: isotopic variations of C, H, and S, Rev. Mineral., 1986, vol. 16, pp. 185–225.

    Google Scholar 

  277. Taylor, S.R. and McLennan, S.M., The geochemical evolution of the continental crust, Rev. Geophys., 1995, vol. 33, pp. 241–265.

    Article  Google Scholar 

  278. Tectonic Map of Nortern-Central-Eastern Asia and Adjacent Areas at Scale 1 : 250000, Petrov, O.V., Leonov, Yu.G., Tingdong, Li, and Tomurtogoo, O., Eds., St. Petersburg: VSEGEI, 2014..

  279. Thompson, R.N., Smith, P.M., Gibson, S.A., et al., Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 377–395.

    Article  Google Scholar 

  280. Tsaruk, I.I., Geology, chemistry, and genesis of Ba–Sr-bearing (benstonite) carbonatites of the Murun massif, Russ. Geol. Geophys., 2003, vol. 44, no. 4, pp. 325–339.

    Google Scholar 

  281. Turkina, O.M., Lektsii po geokhimii magmaticheskogo i metamorficheskogo protsessov: ucheb. Posobie (Lecture on Geochemistry of Magmatic and Metamorphic Processes. A Textbook), Novosibirsk: RITs NGU, 2014.

  282. Turner, S., Arnaud, N., Liu, J., Rogers, N., et al., Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts, J. Petrol., 1996, vol. 37, no. 1, p. 45.

    Article  Google Scholar 

  283. Vakhrushev, V.A. and Vladykin, N.V., Apatite–titanomagnetiteores of the carbonatite complex of South Mongolia, Geol. Rudn. Mestorozhd., 1979, No. 1, pp. 93–96.

  284. van Groos, A.F. and Wyllie, P.J., Experimental data bearing on the role of liquid immiscibility in the genesis of carbonatites, Nature, 1963, no. 199, pp. 801–802.

  285. van Groos, A.F. and Wyllie, P.J., Liquid immiscibility in the system Na2O–Al2O3–SiO2–CO2 at pressure to 1 kilobar, Am. J. Sci., 1966, vol. 264, no. 3, pp. 234–256.

    Article  Google Scholar 

  286. Vasil’eva, Z.V., Volchanskaya, I.K., Ontoev, D.O., et al., On rare-earth zoned apatite from South Mongolia, Izv. Akad. Nauk SSSR. Ser. Geol., 1978, no. 2, pp. 143–148.

  287. Verhulst, A., Balaganskaya, E., Kirnarsky, Y., and Demaiffe, D., Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia), Lithos, 2000, vol. 51, pp. 1–25.

    Article  Google Scholar 

  288. Vladykin, N.V., Ore-bearing tuffs and volcanic rocks of the Mushugai-Khuduk carbonatite complex, Gobi, Mongolia, Izv. Vyssh. Ucheb. Zaved. Sibiri, 1999, nos. 4–5, pp. 84–86.

  289. Vladykin, N.V., The Malyi Murun volcano-plutonic complex: an example of differentiated mantle magmas of lamproitic type, Geochem. Int., 2000, vol. 38, no. 1 (suppl.), pp. 73–83.

    Google Scholar 

  290. Vladykin, N.V., The Aldan Province of K-alkaline rocks and carbonatites: problems of magmatism, genesis and deep sources, Problems of Sources of Deep Magmatism and Plumes, Irkutsk, 2001.

  291. Vladykin, N.V., Geochemistry of Sr and Nd isotopes in alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic consequences, Problemy istochnikov glubinnogo magmatizma i plyumy. Tr. V mezhd. Seminara (Problems of Sources of Deep-Seated Magmatism and Plumes. Proc. 5th International Seminar), Irkutsk–Petropavlovsk-Kamchatskii: Inst. Geograf. SO RAN, 2005, pp. 13–29.

  292. Vladykin, N.V., Potassium alkaline lamproite–carbonatite complexes: petrology, genesis, and ore reserves, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 1119–1128.

    Article  Google Scholar 

  293. Vladykin, N.V., Petrology and composition of rare-meatl alkaline rocks in the South Gobi desert (Mongolia), Russ. Geol. Geophys., 2013, vol. 54, no. 4, pp. 416–435.

    Article  Google Scholar 

  294. Vladykin, N.V., Kotov, A.B., Borisenko, A.S., et al., Age boundaries of formation of the Tomtor alkaline-ultramafic pluton: U-Pb and 40Ar/39Ar geochronological studies, Dokl. Earth Sci., 2014, vol. 454, pp. 7–11.

    Article  Google Scholar 

  295. Vladykin, N.V., Genesis and crystallization of ultramafic alkaline carbonatite magmas of Siberia: ore potential, mantle sources, and relationship with plume activity, Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 698–712.

    Article  Google Scholar 

  296. Vladykin, N.V. and Pirajno, F., Types of carbonatites: geochemistry, genesis and mantle sources, Lithos, 2021, vol. 386–387, p. 105982. https://doi.org/10.1016/j.lithos.2021.105982

    Article  Google Scholar 

  297. Vladykin, N.V. and Tsaruk, I.I., Geology, chemistry, and genesis of Ba—Sr-bearing (“benstonite”) carbonatites of the Murun massif, Russ Geol. Geophys., 2003, vol. 44, no. 4, pp. 315–330.

    Google Scholar 

  298. Vladykin, N.V., Morikyo, T., Miyazaki, T., and Tsypukova, S.S. Carbon and oxygen isotope geochemistry of Siberian carbonatites and geodynamics, Glubinnyi magmatizm, ego istochniki i ikh svyaz' s plyumovymi protsessami (Deep-Seated Magmatism, its Sources, and relationship with Plume Processes), Irkutsk: Inst. Geografii SO RAN, 2004, pp. 89–107.

    Google Scholar 

  299. Vorob’ev, E.I., Geochemical specifics of calcites from carbonatites as prospecting feature, Geokhimiya endogennykh protsessov (Geochemistry of Endogenous Processes), Irkutsk: SibGEOKhI, 1979, pp. 93–96.

  300. Vorob’ev, E.I., Strontium–barium carbonatites of the Murun Massif (eastern Siberia, Russia), Geol. Ore Deposits, 2001, vol. 43, no. 6, pp. 468–480.

    Google Scholar 

  301. Vorob’ev, E.I., Konev, A.A., Malyshonok, Yu.V., et al., Mineralogical features of strontium–barium (benstonite) carbonatites as a new ore type, Prikladnaya mineralogiya Vostochnoi Sibiri (Applied Mineralogy of East Siberia), Irkutsk: Irkutsk. Univ., 1992.

    Google Scholar 

  302. Vorontsov, A.A. and Yarmolyuk, V.V., The evolution of volcanism in the Tugnui–Khilok sector of the Western Transbaikalia rift area in the Late Mesozoic and Cenozoic, J. Volcanol. Seismol., 2007, vol. 1, no. 4, pp. 213–236.

    Article  Google Scholar 

  303. Vorontsov, A.A., Yarmolyuk, V.V., Fedoseev, G.S., et al., Isotopic and geochemical Zoning of Devonian magmatism in the Altai–Sayan rift system: composition and geodynamic nature of mantle sources, Petrology, 2010, vol. 18, no. 6, pp. 596–609.

    Article  Google Scholar 

  304. Vorontsov, A.A., Yarmolyuk, V.V., Ivanov, V.G., and Nikiforov, A.V., Late Mesozoic magmatism in the Dzhida Sector of the Western Transbaikalia Rift Zone: evolutionary stages, associations, and sources, Petrology, 2002, vol. 10, no. 5, pp. 448–468.

    Google Scholar 

  305. Vorontsov, A.A., Yarmolyuk, V.V., Komaritsyna, T.Yu. Late Mesozoic—Early Cenozoic rifting magmatism in the Uda Sector of Western Transbaikalia, Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 723–744.

    Article  Google Scholar 

  306. Vrublevskii, V.V., Petrology of carbonatite complexes of consolidated orogenic areas (by th example of tSouth Siberia and Tien Shan), Doctoral (Geol.-Min.) Dissertation, Tomsk, 2003.

  307. Vrublevskii, V.V., Sources and geodynamic setting of petrogenesis of the Middle Cambrian Upper Petropavlovka alkaline basic intrusive pluton (Kuznetsk Alatau, Siberia), Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 379–401.

    Article  Google Scholar 

  308. Walter, B.F. and Giebel, R.J., Steele-Macinnis, M., et al., Fluids associated with carbonatitic magmatism: a critical review and implications for carbonatite magma ascent, Earth-Sci. Rev., 2021, vol. 215, p. 103509. https://doi.org/10.1016/j.earscirev.2021.103509

    Article  Google Scholar 

  309. Wang, F., Zhou, X.-H., and Zhang, L.-Ch., et al., Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing and implications for the dynamic setting of NE Asia, Earth Planet. Sci. Lett., 2006, vol. 251, pp. 179–198.

    Article  Google Scholar 

  310. Wang, T., Zheng, Y., Zhang, J., et al., Pattern and kinematic polarity of late mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes, Tectonics, 2011, vol. 30, pp. 1–27.

    Article  Google Scholar 

  311. Wang, Y., He, H., Ivanov, A.V., et al., Age and origin of charoitite, Malyy Murun massif, Siberia, Russia, Int. Geol. Rev., 2014, vol. 56, pp. 1007–1019.

    Article  Google Scholar 

  312. Wang, Z., Fan, H., Zhou, L., et al., Carbonatite-related REE deposits: an overview, Minerals, 2020, vol. 10, p. 965. https://doi.org/10.3390/min10110965

    Article  Google Scholar 

  313. Wasserburg, G.J. and DePaolo, D.J., Models of earth structure inferred from neodymium and strontium isotope abundances, Proc. Nat. Acad. Sci., USA, 1976, vol. 76, pp. 3594–3598.

    Article  Google Scholar 

  314. Weidendorfer, D., Schmidt, M.W., and Mattsson, H.B., A common origin of carbonatite magmas, Geology, 2017, vol. 45, pp. 507–510. https://doi.org/10.1130/G38801.1

    Article  Google Scholar 

  315. Woolley, A.R. and Kempe, D.R.C., Carbonatites: nomenclature, average chemical compositions, and element distribution, in Carbonatites: Genesis and Evolution, London: Unwin Hyman, 1989, pp. 1–14.

    Google Scholar 

  316. Woolley, A.R. and Kjarsgaard, B.A., Carbonatite occurrences of the world: map and database, Geol. Surv. Canada, Open File Rept., 2008, no. 5796.

  317. Woolley, A.R. and Kjarsgaard, B.A., Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database, Can. Mineral., 2008, vol. 46, no. 4, pp. 741–752.

    Article  Google Scholar 

  318. Woolley, A.R., Igneous silicate rocks associated with carbonatites: their diversity, relative abundances and implications for carbonatite genesis, Period. Mineral., 2003, vol. 72, pp. 9–17.

    Google Scholar 

  319. Wyllie, P.J. and Tuttle, O.F., The system CaO–CO2–H2O and the origin of carbonatites, J. Petrol., 1960, vol. 1, pp. 1–46.

    Article  Google Scholar 

  320. Wyllie, P.J., Experimental petrology of upper-mantle materials, process and products, J. Geodynam., 1995, vol. 20, no. 4, pp. 429–468.

    Article  Google Scholar 

  321. Xu, M.J., Xu, W.L., Meng, E., and Wang, F., Zircon U-Pb chronology and geochemistry of mesozoic volcanic rocks from the Shanghulin–Xiangyang basins in Erguna area, and its tectonic implications, Geol. Bull. China, 2011, vol. 30, pp. 1321–1338.

    Google Scholar 

  322. Xu, W.-L., Pei, F.-P., Wang, F., et al., Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes, J. Asian Earth Sci., 2013, vol. 74, pp. 167–193.

    Article  Google Scholar 

  323. Yakubovich, O., Mochalov, A., Kotov, A. et al., Pt-4He dating of platinum mineralization, In: Proc. 13th Biennial SGA Meeting, Nancy: 2015, vol. 3, pp. 663–664.

  324. Yang, Z. and Woolley, A., Carbonatites in China: a review, J. Asian Earth Sci., 2006, vol. 27, pp. 559–575.

    Article  Google Scholar 

  325. Yang, Q.-L., Zhao, Z.-F., and Zheng, Y.-F., Modification of subcontinental lithospheric mantle above continental subduction zone: constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China, Lithos, 2012, vol. 146-147, pp. 164–182.

    Article  Google Scholar 

  326. Yarmolyuk, V.V. and Ivanov, V.G., Late Mesozoic and Cenozoic magmatism and geodynamics of Western Transbaikalia, Geotectonics, 2000, vol. 34, no. 2, pp. 121–140.

    Google Scholar 

  327. Yarmolyuk, V.V., Kovalenko, V.I., Ivanov, V.G., and Zhuravlev, D.Z., Sr and Nd isotope composition of mafic volcanic rocks of the South-Khangai hot spot of Central Asia, Dokl. Akad. Nauk, 1995, vol. 342, no. 2, pp. 230–234.

    Google Scholar 

  328. Yarmolyuk, V.V., Kovalenko, V.I., Ivanov, V.G., et al., Late Mesozoic volcanic carbonatites from the Transbaikal Region, Dokl. Earth Sci., 1997, vol. 355A, no. 6, pp. 845–849.

    Google Scholar 

  329. Yarmolyuk, V.V., Ivanov, V.G., and Kovalenko, V.I., Sources of intraplate magmatism of Western Transbaikalia in the Late Mesozoic–Cenozoic: trace-element and isotope data, Petrology, 1998, vol. 6, no. 2, pp. 101–123.

    Google Scholar 

  330. Yarmolyuk, V.V., Kudryashova, E.A., Kozlovsky, A.M., et al., Late Mesozoic—Cenozoic ntraplate magmatism in Central Asia and its relation with mantle diapirism: evidence from the South Khangai volcanic region, Mongolia, J. Asian Earth Sci., 2015, vol. 111, no. 1, pp. 604–623. https://doi.org/10.1016/j.jseaes.2015.05.008

    Article  Google Scholar 

  331. Yarmolyuk V.V., Kovalenko V.I., Sal’nikova E.B., et al., Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian Craton, Dokl. Earth Sci., 2005, vol. 404, no. 3, pp. 1031–1036.

    Google Scholar 

  332. Yarmolyuk V.V., Kuzmin M.I., Kozlovsky, A.M., Late Paleozoic–Early Mesozoic within-plate magmatism in North Asia: traps, rifts, giant batholiths, and the geodynamics of their origin, Petrology, 2013, vol. 21, no. 2, pp. 101–126.

    Article  Google Scholar 

  333. Yarmolyuk, V.V., Kovalenko, I.I., and Ivanov, V.G., Intraplate Late Mesozoic–Cenozoic volcanic province of Central-East Asia - projection of the hot mantle field, Geotectonics, 1995, vol. 29, no. 5, pp. 395–421.

    Google Scholar 

  334. Yarmolyuk, V.V., Nikiforov, A.V., Kovalenko, V.I., et al., Sources of the Late Mesozoic carbonatites of Western Transbaikalia: trace-element and Sr–Nd isotopic data, Geochem. Int., 2001, vol. 39, no. Suppl. 1, pp. 60–78.

  335. Yarmolyuk, V.V. and Kovalenko, V.I., Deep geodynamics and mantle plumes: their role in the formation of the central Asian Foldbelt, Petrology, 2003, vol. 11, no. 6, pp. 504–531.

    Google Scholar 

  336. Yarmolyuk, V.V., Kudryashova, E.A., Kozlovskyi, A.M., and Savatenkov, V.M., Late Cenozoic Volcanic Province in Central and East Asia, Petrology, 2011, vol. 19, no. 4, pp. 327–347.

    Article  Google Scholar 

  337. Yarmolyuk, V.V., Kuzmin, M.I., Vorontsov, A.A., and Khomutova, M.Yu., West Pacific-type convergent boundaries: role in the crust growth history of the Central-Asian Orogen, J. Asian Earth Sci., 2013, vol. 62, pp. 67–78. https://doi.org/10.1016/j.jseaes.2012.10.030

    Article  Google Scholar 

  338. Yarmolyuk, V.V., Nikiforov, A.V., Kozlovsky, A.M., and Kudryashova, E.A., Late Mesozoic East Asian magmatic province: structure, magmatic signature, formation conditions, Geotectonics, 2019, vol. 53, no. 4, pp. 500–516. https://doi.org/10.1134/S0016852119040071

    Article  Google Scholar 

  339. Ying, J., Zhou, X., and Zhang, H., Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source, Lithos, 2004, vol. 75, pp. 413–426.

    Article  Google Scholar 

  340. Ying, J., Zhang, H., Sun, M., et al., Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton: implication for magma mixing of different sources in an extensional regime, Lithos, 2007, vol. 98, pp. 45–66.

    Article  Google Scholar 

  341. Yu, X., Iang, Sh.-F., Chen, H.-L., et al., Permian flood basalts from the Tarim Basin, northwest china: SHRIMP zircon U-Pb dating and geochemical characteristics, Gondwana Res., 2011, vol. 20, pp. 485–497.

    Article  Google Scholar 

  342. Zaitsev, A.N., Mineralogy, Geochemistry, and Postcrystallization Transformations of Carbonatites of the Gregory rift (East Africa), Doctoral (Geol.-Min.) Dissertation, St. Petersburg, 2010.

  343. Zaitsev, A.I., Entin, A.R., Nenashev, N.I., et al., Geokhronologiya i izotopnaya geokhimiya karbonatitov Yakutii (Geochronology and Isotope Geochemistry of Carbonatites of Yakutia), Yakutsk: YaNTs SO RAN, 1992.

  344. Zeng, G., Chen, L.-H., Xu, X.-Sh., et al., Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China, Chem. Geol., 2010, vol. 273, nos. 1–2, pp. 35–45.

    Article  Google Scholar 

  345. Zhang, L.-Ch., Zhou, X.-H., Ying, J.-F., et al., Geochemistry and Sr–Nd–Pb–Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: implications for their origin and mantle source characteristics, Chem. Geol., 2008b, vol. 256, nos. 1–2, pp. 12–23.

    Article  Google Scholar 

  346. Zhang, J.-H., Ge, W.-Ch., Wu, F.-Yu., et al., Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, northeastern China, Lithos, 2008a, vol. 102, nos. 1–2, pp. 138–157.

    Article  Google Scholar 

  347. Zhang, P., Yang, Z., Tao, K., and Yang, X., Mineralogy and Geology of Rare Earths in China, Beijing: Science Press, 1995.

    Google Scholar 

  348. Zhang, H.-F., Sun, M., Zhou, X.-H., et al., Mesozoic lithosphere destruction beneath the north china craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts, Contrib. Mineral. Petrol., 2002, vol. 144, pp. 241–253.

    Article  Google Scholar 

  349. Zhang, D., Zhang, Zh., Santosh, M., et al., Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume, Earth Planet. Sci. Lett., 2013, vol. 361, pp. 238–248. https://doi.org/10.1016/j.epsl.2012.10.034

    Article  Google Scholar 

  350. Zheng, Y.F., Oxygen isotope fractionation in carbonate and sulfate minerals, Geochem. J., 1999, vol. 33, pp. 109–126.

    Article  Google Scholar 

  351. Zhuravlev, A.Z., Zhuravlev, D.Z., Kostitsyn, Yu.A., and Chernyshev, I.V., Determination of Sm-Nd ratio for geochronoligcal purposes, Geokhimiya, 1987, no. 8, pp. 1115–1129.

  352. Zhuravlev, D.Z., Chernyshov, I.V., Agapova, A.A., and Serdyuk, N.I., Precision Nd isotope analysis in rocks, Izv. Akad. Nauk SSSR. Ser. Geol., 1983, no. 12, pp. 23–40.

  353. Zindler, A. and Hart, S.R., Chemical geodynamics, Annu. Rev. Earth Planet. Sci., 1986, vol. 14, pp. 493–571.

    Article  Google Scholar 

  354. Zorin, Yu.A. and Turutanov, E.Kh., Plumes and geodynamics of the Baikal rift zone, Russ. Geol. Geophys., 2005, vol. 46, no. 7, pp. 669–682.

    Google Scholar 

  355. Zorin, Yu.A., Turutanov, E.Kh., Kozhevnikov, V.M., et al., The nature of Cenozoic upper mantle plumes in East Siberia (Russia) and Central Mongolia, Russ. Geol. Geophys., 2006, vol. 47, no. 10, pp. 1046–1059.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies whose results are presented above were carried out at the Laboratory of Rare-Metal Magmatism at the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences. The heads of the laboratory Vyacheslav I. Kovalenko and Vladimir V. Yarmolyuk have opened for myself the pathway into this fascinating region of geosciences: rare-metal magmatism. The charming and charismatic personalities of these scientists, their continuous support of my studies, fatherly attention, and their readiness to provide help allowed me to develop my own style of scientific thinking and showed me scientific outlooks. This was also assisted by my colleagues at the laboratory I.A. Andreeva, D.A. Lykhin, A.M. Kozlovsky, E.A. Kudryasheva, E.N. Listratova, M. Kashepov, О.A. Andreeva, A.A. Andreev, and N.A. Polyakov. The fieldwork during several seasons was always participated by D.A. Lykhin, whose patience and self-assurance were invaluable for achieving the desired results. The studies of the rocks in Mongolia could not be possible without the darga (boss in the Mongolian language) of the field research team A.M. Kozlovsky.

I will never forget my first field seasons, which were conducted together with G.S. Ripp, N.V. Vladykin, K.B. Bulnaev, I.V. Gordienko,, A.V. Goreglyad, and of course, our colleagues at Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, V.G. Ivanov, A.A. Vorontsov, and D.A. Baikin.

The founder of the Tuva Institute for the Exploration of Natural Resources, Siberian Branch, Russian Academy of Sciences, V.I. Lebedev provided a secure foothold for our fieldwork in Mongolia and Tuva. Our study of carbonatites in central Tuva, as well as other magmatic rocks in the area, were strongly connected with the outstanding geologist A.M. Surgakova and the expert in the nature of Tuva V.A. Popov. I am deeply thankful to all of the aforementioned persons.

I would like to mention Alexander V. Bolonin, a graduate from the Moscow Exploration Institute, who was the first to notice a magmatic nature of carbonatites in Tuva. Our joint fieldwork during many seasons and his keen scientific interest in alkaline rocks in Tuva were one of the driving forces for publishing this book.

I also like to express my gratitude to my colleagues at the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, A.B. Kotov, E.B. Sal’nikova, I.V. Anisimova, V.P. Kovach, Yu.V. Plotkina, and V.M. Savatenkov. Our long-term cooperation was both fruitful and pleasant.

This work could not be possible without analytical studies. I thank the staffs of analytical units at Vinogradov Institute, and personally G.A. Pogudina, for attentive and careful work with my samples. High-resolution studies of relations between minerals were assisted by N.N. Kononkova, A.V. Mokhov, N.V. Trubkina, and L.O. Magazina.

I thank the head of the Laboratory of Isotope Geochemistry and Geochronology at IGEM RAS I.V. Chernyshev for providing continuous support to our Sr and Nd isotope studies. I am grateful to my guides to isotope studies A.V. Chugaev, K.N. Shatagin, V.N. Golubev, and Yu.V. Gol’tsman, who always supported this study. I warmly remember D.Z. Zhuravlev, who was the first to study the isotope composition of carbonatites from western Transbaikalia and whose support and valuable advice I used later on.

I am indebted to B.G. Pokrovsky for studying the stable-isotope oxygen, carbon, and sulfur composition of carbonatites from Central Asia and for providing the very first interpretations of these data. B.G. Pokrovsky’s professionalism and scientific erudition helped me in mastering this field of knowledge.

This study was assisted by my colleagues at IGEM RAS P.M. Kartashev, A.V. Girnis, E.A. Dubinina, and many others. I also grateful to all persons whom I met during my professional, and not only professional, activities.

I highly appreciate the hard work of the reviewers of the manuscript of this publication. My studies were continuously supported by my family.

Funding

This study was carried out under government-financed research programs for IGEM RAS, projects of the Russian Foundation for Basic Research, and projects from the president of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nikiforov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Bogina and E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, A.V. Late Mesozoic Carbonatite of Central Asia. Petrology 31, 1–141 (2023). https://doi.org/10.1134/S0869591123010137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123010137

Keywords:

Navigation