Skip to main content
Log in

Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes

  • Article
  • Geochemistry
  • Published:
Chinese Science Bulletin

Abstract

Zircon is the most useful mineral for studies in U-Pb geochronology and Hf and O isotope geochemistry. Matrix effect is a major problem of the microbeam techniques such as SIMS and LA-(MC)-ICPMS. Therefore, external standardization using well-characterized natural zircon standards is fundamental for accurate microbeam measurements. While the isotopic geochronology and geochemistry laboratories equipped with microbeam analytical facilities have been increasingly established in China during the past decade, applications of the isotopic microanalysis are still limited due to shortage of available standards. We report here the Qinghu zircon as a potential new working reference for microbeam analysis of zircon U-Pb age and O-Hf isotopes. This zircon was separated from the Qinghu quartz monzonite from the western Nanling Range, Southeast China. It is fairly homogeneous in U-Pb age and Hf and O isotopes in terms of large amounts of mircobeam measurements by LA-MC-ICPMS and SIMS at the scales of 20–60 μm. SIMS measurements yield consistent 206Pb/238U age within analytical uncertainties with that obtained by ID-TIMS. Precise determinations of O isotopes by IRMS and Hf isotopes by solution MC-ICPMS are in good agreement with the statistical mean of microbeam measurements. We recommend U-Pb age of = 159.5 ± 0.2 Ma (2SE), δ 18O = 5.4‰± 0.2‰ (2SD) and 176Hf/177Hf = 0.283002 ± 0.000004 (2SD) as the best reference values for the Qinghu zircon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61: 237–269

    Article  ADS  CAS  Google Scholar 

  2. Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 2007, 315: 980–983

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol, 2007, 153: 177–190

    Article  ADS  CAS  Google Scholar 

  4. Ushikubo T, Kita N T, Cavosie A J, et al. Lithium in Jack Hills zircons: Evidence for extensive weathering of earth’s earliest crust. Earth Planet Sci Lett, 2008, 272: 666–676

    Article  ADS  CAS  Google Scholar 

  5. Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints. Sci China Ser D-Earth Sci, 2009, 52: 1262–1278

    Article  CAS  Google Scholar 

  6. He S P, Li R S, Wang C, et al. Discovery of ∼4.0 Ga detrital zircons in the Changdu Block, North Qiangtang, Tibetan Plateau. Chin Sci Bull, 2011, 56: 647–658

    Article  CAS  Google Scholar 

  7. Xie J, Yang S L, Ding Z L. Methods and application of using detrital zircons to trace the provenance of loess. Sci China Earth Sci, 2012, 42: 923–933

    Google Scholar 

  8. Compston W. Geological age by instrumental analysis: The 29th Hallimond Lecture. Mineral Mag, 1999, 63: 297–311

    Article  CAS  Google Scholar 

  9. Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand Newsl, 1995, 19: 1–23

    Article  CAS  Google Scholar 

  10. Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol, 2004, 205: 115–140

    Article  CAS  Google Scholar 

  11. Stern R A, Amelin Y. Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem Geol, 2003, 197: 111–142

    Article  CAS  Google Scholar 

  12. Nelson D R. An assessment of the determination of depositional ages for precambrian elastic sedimentary rocks by U-Pb dating of detrital zircons. Sediment Geol, 2001, 141: 37–60

    Article  ADS  Google Scholar 

  13. Ratcliffe N M, Aleinikoff J N. Silurian age of the Braintree Complex, VT: Bearing on the age of the Cram Hill and Shaw Mountain formations. Abstr Programs-Geol Soc Amer, 2000, 32: A–68

    Google Scholar 

  14. Paces J B, Miller J D. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights into physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J Geophys Res, 1993, 98: 13997–14013

    Article  ADS  CAS  Google Scholar 

  15. Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47–69

    Article  CAS  Google Scholar 

  16. Sláma J, Košler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 2008, 249: 1–35

    Article  Google Scholar 

  17. Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand Geoanalyt Res, 2008, 32: 247–265

    Article  CAS  Google Scholar 

  18. Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal. Geostand Geoanalyt Res, 2004, 28: 9–39

    Article  CAS  Google Scholar 

  19. Li X H, Long W G, Li Q L, et al. Penglai zircon megacryst: A potential new working reference for microbeam analysis of Hf-O isotopes and U-Pb age. Geostand Geoanalyt Res, 2010, 34: 117–134

    Article  CAS  Google Scholar 

  20. Li X H, Chung S L, Zhou H W, et al. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for tectonic evolution of SE China. In: Malpas J, Fletcher C J, Aitchison J C, et al., eds. Aspects of The Tectonic Evolution of China. London: Geological Society, 2004. 193–216

    Google Scholar 

  21. Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochem Geophys Geosyst, 2009. 10: Q04010, doi: 10.1029/ 2009GC002400

    ADS  Google Scholar 

  22. Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 2010, 15: 1535–1546

    Article  Google Scholar 

  23. Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol, 2006, 151: 413–433

    Article  ADS  CAS  Google Scholar 

  24. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Sanders A D, Norry M J, eds. Magmatism in the Ocean Basins. London: Geological Society, 1989. 528–548

    Google Scholar 

  25. Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal At Spectrom, 2010, 25: 1107–1113

    Article  CAS  Google Scholar 

  26. Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett, 1975, 26: 207–221

    Article  ADS  CAS  Google Scholar 

  27. Ludwig K R. Users manual for Isoplot/Ex rev. 2.49, 2001

    Google Scholar 

  28. Li X H, Li W X, Li Q L, et al. Petrogenesis and tectonic significance of the ∼850 Ma Gangbian alkaline complex in South China: Evidence from in-situ zircon U-Pb and Hf-O isotopes and whole-rock geochemistry. Lithos, 2010, 114: 1–15

    Article  ADS  CAS  Google Scholar 

  29. Sharp Z D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta, 1990, 54: 1353–1357

    Article  ADS  CAS  Google Scholar 

  30. Rumble D, Farquhar J, Young E D, et al. In situ oxygen isotope analysis with an excimer laser using F2 and BrF5 reagents and O2 gas as analyte. Geochim Cosmochim Acta, 1997, 61: 4229–4234

    Article  ADS  CAS  Google Scholar 

  31. Zheng Y F, Wang Z R, Li S G, et al. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer. Geochim Cosmochim Acta, 2002, 66: 625–634

    Article  ADS  CAS  Google Scholar 

  32. Valley J W, Kitchen N, Kohn M J, et al. UWG-2, a garnet standard for oxygen isotope ratio: Strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta, 1995, 59: 5223–5231

    Article  ADS  CAS  Google Scholar 

  33. Gong B, Zheng Y F, Chen R X. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Minerals, 2007, 34: 687–698

    Article  ADS  CAS  Google Scholar 

  34. Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105–126

    Article  CAS  Google Scholar 

  35. Hou K J, Li Y H, Zou T R, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications (in Chinese). Acta Petrol Sin, 2007, 23: 2595–2604

    CAS  Google Scholar 

  36. Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Analyt At Spectrom, 2012, 27: 1391–1399

    Article  CAS  Google Scholar 

  37. Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J Anal At Spectrom, 2002, 17: 1567–1574

    Article  CAS  Google Scholar 

  38. Goolaerts A, Mattielli N, Jong J D, et al. Hf and Lu Isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chem Geol, 2004, 206: 1–9

    Article  CAS  Google Scholar 

  39. Woodhead J D, Hergt J M. Preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res, 2005, 29: 183–195

    Article  CAS  Google Scholar 

  40. Blichert-Toft J. The Hf isotopic composition of zircon reference material 91500. Chem Geol, 2008, 253: 252–257

    Article  CAS  Google Scholar 

  41. White L T, Ireland T R. High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations. Chem Geol, 2012, 306-307: 78–91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianHua Li.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

About this article

Cite this article

Li, X., Tang, G., Gong, B. et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin. Sci. Bull. 58, 4647–4654 (2013). https://doi.org/10.1007/s11434-013-5932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-5932-x

Keywords

Navigation