Skip to main content
Log in

Thermodynamic Modeling of the Formation of Corundum-Bearing Metasomatic Rocks in the Belomorian Mobile Belt, Fennoscandian Shield

  • Published:
Petrology Aims and scope Submit manuscript

bstract

The mineral zoning of corundum-bearing rocks of the Belomorian mobile belt, whose genesis remains controversial, has been studied at one of the typical occurrences: Khitoostrov. Based on the estimates of the PT parameters of the formation of corundum-bearing rocks by the multiequilibrium thermobarometry method, pseudosections were constructed using the Perple_X 6.9.0 software package in PT, T–µ(SiO2), µ(SiO2)–µ(Na2O), and µ(SiO2)–µ(K2O) space, with CO2–H2O fluid, to model the metasomatic transformation of migmatized kyanite–garnet–biotite gneisses of the Chupa sequence. It has been established that the mineral zoning of the corundum-bearing rocks reflects the successive transition of SiO2, Na2O and K2O to a mobile state. Desilication in the outer zones led to the formation of` quartz-free associations, alkaline sodic metasomatism concurrent with ongoing desilication led to the formation of associations with staurolite and plagioclase, and K2O removal led to the replacement of biotite with calcium amphibole. Further desilication and sodic metasomatism resulted in mineral assemblages with corundum. This process is reflected in an increase in the sodium content in the calcic amphibole and variations in the Ca content of the garnet at a practically constant composition of the plagioclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. Supplementary materials for the Russian and English on-line versions of this paper are available at https://elibrary.ru/ and http://link.springer.com/, respectively: see ESM_1.xlsx (Suppl. 1) for analyses of minerals.

REFERENCES

  1. Akimova, E.Yu., Azimov, P.Ya., and Serebryakov, N.S., Scarce and unusual minerals from the Khitostrov corundum-bearing rocks (North Karelia), Tr. KolNTs RAS, 2019, vol. 6, no. 10, pp. 9–15.

    Google Scholar 

  2. Altherr, R., Okrusch, M., and Bank, H., Corundum- and kyanite-bearing anatexites from the Precambrian of Tanzania, Lithos, 1982, vol. 15, pp. 191–197.

    Google Scholar 

  3. Aranovich, L.Y. and Newton, R.C., Experimental determination of CO2–H2O activity–composition relations at 600–1000°C and 6–14 kbar by reversed decarbonation and dehydration reactions, Am. Mineral., 1999, vol. 84, pp. 1319–1332.

    Google Scholar 

  4. Astaf’ev, B.Yu. and Voinova, O.A., Klimovskii metasomatic complex of the Belomorian Mobile Belt: composition, age, geological position, Geotectonics, 2020, vol. 54, no. 1, pp. 19–34.

    Google Scholar 

  5. Babarina I.I., Stepanova A.V., Azimov P.Ya., Serebryakov N.S. Heterogeneous basement reworking during Paleoproterozoic collisional orogeny within the Belomorian Province, Fennoscandian Shield, Geotectonics, 2017, vol. 51, no. 5, pp. 463–478.

    Google Scholar 

  6. Beach, A., The mineralogy of high-temperature shear zones at Scourie, NW Scotland, J. Petrol., 1973, vol. 14, pp. 231–248.

    Google Scholar 

  7. Berger, J., Femenias, O., Ohnenstetter, D., et al., Origin and tectonic significance of corundum–kyanite–sapphirine amphibolites from the Variscan French Massif Central, J. Metamorph. Geol., 2010, vol. 28, no. 3, pp. 341–360.

    Google Scholar 

  8. Berman, R.G., Internally consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, pp. 445–522.

    Google Scholar 

  9. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.

    Google Scholar 

  10. Berman, R.G. and Aranovich, L.Ya., Optimized standard state and solution properties of minerals: i. model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 1–24.

    Google Scholar 

  11. Bindeman, I.N. and Serebryakov, N.S., Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga, Earth Planet. Sci. Lett., 2011, vol. 306, pp. 163–174.

    Google Scholar 

  12. Bindeman, I.N., Serebryakov, N.S., Schmitt, A.K., et al., Field and microanalytical isotopic investigation of ultradepleted in 18O Paleoproterozoic “Slushball Earth” rocks from Karelia, Russia, Geosphere, 2014, vol. 10, pp. 308–339.

    Google Scholar 

  13. Bucher, K., De Capitani, C., and Grapes, R., The development of a margarite–corundum blackwall by metasomatic alteration of a slice of mica schist in ultramafic rock, Kvesjoen, Norwegian Caledonides, Can. Mineral., 2005, vol. 43, pp. 129–156.

    Google Scholar 

  14. Busheva, N.L., Genetic features of corundum deposit in North Karelia, Izv. Vyssh. Ucheb. Zaved. Geol. Razvedka, 1983, no. 12, p. 90.

  15. Bushmin, S.A. and Glebovitsky, V.A., Scheme of mineral facies of metamorphic rocks and its application to the Fennoscandian shield with representative sites of orogenic gold mineralization, Trans. KarRC RAS, 2016, no. 2, pp. 3–27.

  16. Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 524–541.

    Google Scholar 

  17. Dolivo-Dobrovol’skii, D.V., Software TWQ_View, 2006a. http://www.dimadd.ru/ru/Programs/twqview.

  18. Dolivo-Dobrovol’skii, D.V., Software TWQ-Comb, 2006b. http://www.dimadd.ru/ru/Programs/twqcomb.

  19. Drugova, G.M., Major stages in the evolution of the Chupa succession of the Belomorian fold belt, Zap. Ross. Mineral. O-va, 1999, no. 3, pp. 49–57.

  20. Dutrow, B.L., Henry, D.J., and Sun, Z., Origin of corundum–tourmaline–phlogopite rocks from Badakhshan, northeastern Afghanistan: a new type of metasomatism associated with sapphire formation, Eur. J. Mineral, 2019, vol. 31, no. 4, pp. 739–753.

    Google Scholar 

  21. Filina, M.I., Sorokina, E.S., Botcharnikov, R., et al., Corundum anorthosites–kyshtymites from the South Urals, Russia: a combined mineralogical, geochemical, and U-Pb zircon geochronological study, Minerals, 2009, no. 9, p. 234. https://doi.org/10.3390/min9040234

  22. Giuliani, G., Groat, L.A., Fallick, A.E., et al., Ruby deposits: a review and geological classification, Minerals, 2020, no. 10, p. 597.

  23. Glebovitskii, V.A. and Bushmin, S.A., Poslemigmatitovyi metasomatoz (Postmigmatite Metasomatism), Leningrad: Nauka, 1983.

  24. Goncalves, P., Oliot, E., Marquer, D., and Connolly, J.A.D., Role of chemical processes on shear zone formation: an example from the Grimsel metagranodiorite (Aar massif, Central Alps), J. Metamorph. Geol., 2012, vol. 30, pp. 703–722.

    Google Scholar 

  25. Hawthorne, F.C., Oberti, R., Harlow, G.E., et al., Nomenclature of the amphibole supergroup, Am. Mineral., 2012, vol. 97, nos. 11–12, pp. 2031–2048.

    Google Scholar 

  26. Herwartz, D., Pack, A., Krylov, D., et al., Revealing the climate of snowball earth from δ17O systematics of hydrothermal rocks, Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 17, pp. 5337–5341.

    Google Scholar 

  27. Holland, T.J.B. and Powell, R., A Compensated-Redlich–Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600°C, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 265–273.

    Google Scholar 

  28. Holland, T.J.B. and Powell, R., An internally-consistent thermodynamic dataset for phases of petrological interest, J. Metamorph. Geol., 1998, no. 16, pp. 309–344.

  29. Karmakar, S., Mukherjee, S., Sanyal, S., and Sengupta, P., Origin of peraluminous minerals (corundum, spinel, and sapphirine) in a highly calcic anorthosite from the Sittampundi layered complex, Tamil Nadu, India, Contrib. Mineral. Petrol., 2017, vol. 172, no. 8. pp. 1–23.

  30. Keulen, N., Thomsen, T.B., Schumacher, J.C., et al., Formation, origin and geographic typing of corundum (ruby and pink sapphire) from the Fiskenæsset complex, Greenland, Lithos, 2020, vol. 366–367, p. 105536. https://doi.org/10.1016/j.lithos.2020.105536

    Article  Google Scholar 

  31. Khodorevskaya, L.I. and Varlamov, D.A., High-temperature metasomatism of the layered mafic–ultramafic massif in Kiy Island, Belomorian Mobile Belt, Geochem. Int., Geokhimiya. 2018, vol. 56, no. 6, pp. 535–553.

    Google Scholar 

  32. Kisin, A.Yu., Mestorozhdeniya rubinov v mramorakh (na primere Urala) (Ruby Deposits in Marbles by the Example of the Urals), Sverdlovsk: Izd. UrO AN SSSR, 1991.

  33. Korzhinskii, D.S., A review of metasomatic processes, Osnovnye problemy v uchenii o magmatogennykh rudnykh mestorozhdeniyakh (Main Problems in the Concept on Magmatogenic Ore Deposits), Moscow: Izd-vo AN SSSR, 1955, pp. 335–457.

    Google Scholar 

  34. Korzhinskii, D.S., Teoriya metasomaticheskoi zonal’nosti (Theory of Metasomatic Zoning), Moscow: Nauka, 1982.

  35. Kozlovskii, V.M., Travin, V.V., Korpechkov, D.I., et al., Gently sloping shear zones in the Belomorian Mobile Belt: geology, structure, and PT parameters, Geotectonics, 2016, vol. 50, no. 6, pp. 579–597.

    Google Scholar 

  36. Kozlovskii, V.M., Travin, V.V., Savatenkov, V.M., et al., Thermobarometry of Paleoproterozoic metamorphic events in the central Belomorian Mobile Belt, Northern Karelia, Russia, Petrology, 2020, vol. 28, no. 2, pp. 183–206.

    Google Scholar 

  37. Krylov, D.P. and Glebovitsky, V.A., Local distribution of oxygen isotopes and fluid exchange during genesis of the corundum-bearing rocks of Khitostrov Island, Dokl. Earth Sci., 2017, vol. 473, no. 5, pp. 441–443.

    Google Scholar 

  38. Krylov, D.P., Sal’nikova, E.B., Fedoseenko, A.M., et al., Age and origin of the corundum-bearing rocks of Khitostrov Island, Northern Karelia, Petrology, 2011, vol. 19, no. 1, pp. 79–86.

    Google Scholar 

  39. Kullerud, K., Nasipuri, P., Ravna, E.J.K., and Selbekk, R.S., Formation of corundum megacrysts during H2O-saturated incongruent melting of feldspar: P-t pseudosection-based modelling from the Skattora migmatite complex, north Norwegian Caledonides, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 627–641.

    Google Scholar 

  40. Lebedev, V.K., Kalmykova, N.A., and Nagaitsev, Yu.V., Corundum–staurolite–hornblende schists of the Belomorian Complex, Sov. Geologiya, 1974, no. 9, pp. 78–89.

  41. Li, Y., Yang, Y., Liuy, Y-C., Groppo, C., and Rolfo, F., Muscovite dehydration melting in silica-undersaturated systems: a case study from corundum-bearing anatectic rocks in the Dabie Orogen, Minerals, 2020, no. 10, p. 213.

  42. Metasomatizm i metasomaticheskie porody (Metasomatism and Metasomatic Rocks) Zharikov, V.A. and Rusinov, V.L, Eds., Moscow: Nauchn. Mir, 1998.

  43. Myskova, T.A., Aluminous Gneisses of the Belomorian Zone: Chemical Composition, Origin, and Conditions of Formation, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, St. Petersburg: IGGD RAN, 2001.

  44. Nozaka, T., Meyer, R., Wintsch, R.P., and Wathen, B., Hydrothermal spinel, corundum and diaspore in lower oceanic crustal troctolites from the Hess deep rift, Contrib. Mineral. Petrol., 2016, vol. 171, no. 53, pp. 1–14.

    Google Scholar 

  45. Owens, B.E., Belkin, H.E., and Zerolis, J.M., Margarite, corundum, gahnite and zincohogbomite in a Blackwall, Raleigh Terrane, Eastern Piedmont Province, USA, Mineral. Mag., 2013, vol. 77, no. 7, pp. 2913–2930.

    Google Scholar 

  46. Pajunen, M. and Poutiainen, M., Palaeoproterozoic prograde metasomatic–metamorphic overprint zones in Archaean tonalitic gneisses eastern Finland, Bull. Geol. Soc. Finl., 1999, vol. 71, no. 1, pp. 73–132.

    Google Scholar 

  47. Raith, M.M., Rakotondrazafy, R., and Sengupta, P., Petrology of corundum–spinel–sapphirine–anorthite rocks ('sakenites') from the type locality in Southern Madagascar, J. Metamorph. Geol., 2008, vol. 26, pp. 647–667.

    Google Scholar 

  48. Raith, M.M., Srikantappa, C., Sengupta, P., et al., Corundum–leucosome-bearing aluminous gneiss from Ayyarmalai, Southern Granulite Terrain, India: a textbook example of vapor phase-absent muscovite-melting in silica undersaturated aluminous rocks, Am. Mineral., 2010, vol. 95, pp. 897–907.

    Google Scholar 

  49. Riesco, M., Stuwe, K., and Reche, J., Formation of corundum in metapelites around ultramafic bodies. An example from the Saualpe region, Eastern Alps, Mineral. Petrol., 2005, vol. 83, pp. 1–25.

    Google Scholar 

  50. Serebryakov, N.S., Petrology of the Corundum-Bearing Rocks of the Chupa Succession of the Belomorian Mobile Belt, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Moscow: IGEM RAN, 2004.

  51. Serebryakov, N.S. and Rusinov, V.L., High-grade calcium–sodium metasomatism and corundum formation in the Precambrian Belomorian Mobile Belt, Karelia, Dokl. Earth Sci., 2004, vol. 395, no. 4, pp. 389–393.

    Google Scholar 

  52. Serebryakov N.S., Astaf’ev B.Yu., Voinova O.A., Presnyakov S.L. First Th–U–Pb single zircon dating of metasomatites from the Belomorian Mobile Belt, Dokl. Earth Sci., 2007, vol. 413A, no. 3, pp. 388–392.

    Google Scholar 

  53. Shurkin, K.A., Gorlov, N.V., Sal’e, M.E., et al., Belomorskii kompleks Severnoi Karelii i yugo-zapada Kol’skogo poluostrova (geologiya i pegmatitonosnost') (Belomorian Compelx of Northern Karelia and Western Kola Peninsula: Geology and Pegmatite Potential), Leningrad: Izd-vo AN SSSR, 1962.

  54. Skublov, S.G., Bushmin, S.A., Kuznetsov, A.B., et al., An abnormal isotopic composition of oxygen in zircon from corundum-bearing metasomatites of the Dyadina Gora ore occurrence, Belomorian Mobile Belt, Dokl. Earth Sci., 2020, vol. 491, pp. 247–252.

    Google Scholar 

  55. Terekhov, E.N., REE distribution in corundum-bearing and other metasomatic rocks during the exhumation of metamorphic rocks of the Belomorian Belt, Baltic Shield, Geochem. Int., 2007, vol. 45, no. 4, pp. 364–380.

    Google Scholar 

  56. Terekhov, E.N. and Levitskii, V.I., Geological-structural tendencies in the distribution of corundum mineralization in the northwestern Belomorian region, Izv. Vyssh. Ucheb. Zaved., Geol. Razved., 1991, no. 6, pp. 3–13.

  57. Ustinov, V.I., Baksheev, I.A., and Serebryakov, N.S., Oxygen isotopic composition of the mineral-forming fluids of corundum-bearing metasomatic rocks at the Khitoostrov and Varaka mineral occurrences, Northern Karelia, Geochem. Int., 2008, vol. 46, no. 11, pp. 1174–1178.

    Google Scholar 

  58. Volodichev, O.I., Belomorskii kompleks Karelii. Geologiya i petrologiya (Belomorian Compelx of Karelia. Geology and Petrology), Leningrad: Nauka, 1990.

  59. Vysotskiy, S.V., Ignat’ev, A.V., Levitskii, V.I., et al., Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in Northern Karelia as an indicator of their unusual genesis, Geochem. Int., 2014, vol. 52, no. 9, pp. 773–782.

    Google Scholar 

  60. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Google Scholar 

  61. Yakymchuk, C. and Szilas, K., Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: exploration vectors for ruby deposits within high-grade greenstone belts, Geosci. Front., 2018, vol. 9, no. 3, pp. 727–749.

    Google Scholar 

  62. Zakharov, D.O., Bindeman, I.N., Serebryakov, N.S., et al., Low δ18O rocks in the Belomorian Belt, NW Russia, and Scourie dikes, NW Scotland: a record of ancient meteoric water captured by the Early Paleoproterozoic global mafic magmatism, Precambrian Res., 2019, vol. 333, p. 105431.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.A. Bushmin (Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences) for valuable consultations and E.N. Kozlov (Geological Institute, Kola Research Center, Russian Academy of Sciences) for help in organizing and conducting the fieldwork. P.Ya. Azimov and Sh.K. Baltybaev (Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences) are thanked for consultations on work with computer programs. Some materials were made available for this research by courtesy of N.S. Serebryakov (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences). Comments made by L.Ya. Aranovich (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) and the anonymous reviewer led us to significantly increase the quality of the manuscript.

Funding

This study was carried out under government-financed research program FMUW-2021-0002 for the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Akimova or A. B. Kol’tsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimova, E.Y., Kol’tsov, A.B. Thermodynamic Modeling of the Formation of Corundum-Bearing Metasomatic Rocks in the Belomorian Mobile Belt, Fennoscandian Shield. Petrology 30, 60–81 (2022). https://doi.org/10.1134/S0869591122010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122010027

Keywords:

Navigation