Skip to main content
Log in

Petrology of the Mid-Paleoproterozoic Tiksheozero UltramaficAlkalineCarbonatite Complex (Northern Karelia)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports first comprehensive geological, petrographic, mineralogical, and geochemical data on one of the world’s oldest Tiksheozero ultramafic‒alkaline‒carbonatite complex (~1.99 Ga), which belongs to the Mid-Paleoproterozoic igneous province of the Baltic Shield. The complex was formed in three intrusive phases. The first phase is composed of the low-alkali mafic‒ultramafic rocks: dunites, wehrlites, clinopyroxenites, and gabbro. The rocks of the second phase are alkaline ultramafic rocks represented mainly by jacupirangites (alkaline clinopyroxenites) and foidolites (melteigites, ijoliltes, and urtites), with subordinate olivinites, alkaline gabbro, and nepheline syenites. The third intrusive phase is made up of carbonatites. Geochemical and mineralogical data indicate that all three phases were derived from different primary melts. It is shown that the nepheline syenites were obtained by fractionation of foidolites. A model of formation of such complexes through decompressional melting of mantle plume head enriched in carbonate fluid is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. Results of the studies are presented in Supplementary materials to the Russian and English versions of the paper at https://elibrary.ru/ and http://link.springer.com/ respectively: (ESM_1. xlsx) characteristics of rocks (phases 1–3) of the Tiksheozero Complex; (ESM_2. xlsx) compositions of minerals in rocks of the Tiksheozero Complex; (ESM_3. xlsx) least square modeling of fractional crystallization.

REFERENCES

  1. Arzamastsev, A.A. and Vu Fu-Yan, U–Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479.

    Article  Google Scholar 

  2. Arzamastsev, A.A., Bea, F., Arzamastseva, L.V., and Montero, P., Proterozoic Gremyakha–Vyrmes polyphase massif, Kola Peninsula: an example of mixing basic and alkaline mantle melts, Petrology, 2006, vol. 14, no. 4, pp. 361–389.

    Article  Google Scholar 

  3. Beccaluva, L., Binchini, G., Natali, C., and Siena, F., The alkaline-carbonatite complex of Jacupiranga (Brazil): magma genesis and mode of emplacement, Gondwana Res., 2017, vol. 44, pp. 157–177.

    Article  Google Scholar 

  4. Bell, K. and Tilton, G.R., Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity, J. Petrol., 2001, vol. 42, no. 10, pp. 1927–1945.

    Article  Google Scholar 

  5. Bogachev, A.I., Slyusarev, V.D., Kravchenko, A.N., et al., A new type of Proterozoic alkaline magmatism in Karelia, Dokl. Akad. Nauk SSSR, 1976, vol. 230, no. 5, pp. 1169–1172.

    Google Scholar 

  6. Brey, G.P., Kogarko, L.N., Ryabchikov, I.D., Carbon dioxide in kimberlitic melts, N. Jahrb. Mineral. Monatsh., 1991, no. 4, pp. 159–168.

  7. Brooker, R.A., The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: an experimental study, J. Petrol., 1998, vol. 39, nos. 11–12, pp. 1905–1915.

    Google Scholar 

  8. Bychkova, Ya.V., Sinitsyn, M.Yu., Petrenko, D.B., et al., Method peculiarities of multielemental analysis of rocks with inductively-coupled plasma mass spectrometry, Moscow Univ. Geol. Bull., 2017, vol. 72, no. 1, pp. 56–63.

    Article  Google Scholar 

  9. Chmyz, L., Arnaud, N., Biondi, J.C., et al., Ar-Ar ages, Sr-Nd isotope geochemistry, and implications for the origin of the silicate rocks of the Jacupiranga ultramafic–alkaline complex (Brazil), J. South Am. Earth Sci., 2017, vol. 77, pp. 286–309.

    Article  Google Scholar 

  10. Corfu F., Bayanova, T., Shchiptsov, V., and Frantz, N., U-Pb ID-TIMS age of the Tikshozero carbonatite: Expression of the 2.0 Ga alkaline magmatism in Karelia, Russia, Cent. Eur. J. Geosci., 2011, vol. 3, no. 3, pp. 302–308.

    Google Scholar 

  11. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Deep-Seated Geodynamics), 2‑nd Ed., Novosibirsk: Nauka “GEO”, 2001.

  12. Downes, H., Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe, J. Petrol., 2001, vol. 41, p. 233.

    Article  Google Scholar 

  13. Ernst, R.E., Large Igneous Province, Cambridge: Cambridge University Press, 2014.

    Book  Google Scholar 

  14. Frantts, N.A., Alkaline-ultramafic dikes of the Tiksheozero carbonatite massif (North Karelia) and their petrological significance, Vestn. St. Petersb. Gos. Univ., Ser. 7, 2006, vol. 3, pp. 61–66.

    Google Scholar 

  15. French, S.W. and Romanowicz, B., Broad plumes rooted at the base of the earth’s mantle beneath major hotspots, Nature, 2015, vol. 525, pp. 95–99.

    Article  Google Scholar 

  16. Gill, R., Igneous Rocks and Processes: A Practical Guide, Chichester: Wiley-Blackwell, 2010.

    Google Scholar 

  17. Girnis, A.V., Olivine–orthopyroxene–melt equilibrium as a thermobarometer for mantle-derived magmas, Petrology, 2003, vol. 11, no. 2, pp. 101–113.

    Google Scholar 

  18. Gualda, M.S., Ghiorso, M.S., Lemons, R.V., and Carley, T.L., Rhyolite-melts: a modified calibration of melts optimized for silica-rich, fluid-bearing magmatic systems, J. Petrol., 2012, vol. 53, pp. 875–890.

    Article  Google Scholar 

  19. Hanski, E.J., Huhma, H., and Melezhik, V.A., New isotopic and geochemical data from the Paleoproterozoic Pechenga greenstone belt, NW Russia: implication for basin development and duration of volcanism, Precambrian Res., 2014, vol. 245, pp. 51–65.

    Article  Google Scholar 

  20. O’Hara, M.J., The bearing of phase equilibria studies on the origin and evolution of basic and ultrabasic rocks, Earth Sci. Rev., 1968, vol. 4, pp. 69–133.

    Article  Google Scholar 

  21. Hart, S.H. and Dunn, T., Experimental Cpx/melt partitioning of 24 trace elements, Contrib. Mineral. Petrol., 1993, vol. 113, pp. 1–8.

    Article  Google Scholar 

  22. Hutton, C.J. and Sharpe, M.R., Significance and origin of boninite-like rocks associated with the bushveld complex, Boninites and Related Rocks, Crawford, A.J., Eds., London: Unvin Hyman, 1989.

    Google Scholar 

  23. Yoder, J.R., and Tilley, C.E., Origin of Basalt Magmas: an experimental study of natural and synthetic rock systems, J. Petrol., 1962, vol. 2, pp. 342–532.

    Article  Google Scholar 

  24. Ionov, D.A., O’Reily, S.Y., Genshaft, Y.S., and Kopylova, M.G., Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral composition and trace-element residence, Contrib. Mineral. Petrol., 1996, vol. 125, no. 4, pp. 375–392.

    Article  Google Scholar 

  25. Ivashchenko, V.I. and Golubev, A.I., Zoloto i platina Karelii: formatsionno-geneticheskie tipy orudeneniya i perspektivy (Gold and Platinum of Karelia: Formational–Genetic Types of Mineralization and Prospects), Petrozavodsk: GI KarNTs RAN, 2011.

  26. Karandashev, V.K., Khvostikov, V.A., Nosenko, S.V., and Burmii, Zh.P., Application of highly enriched stable isotopes in mass analysis of rock, ground, soil, and bottom sediment samples by inductively coupled plasma mass spectrometry, Zavodskaya Laboratoriya. Diagnostika Materialov, 2016, vol. 82, no. 7, pp. 6-15.

    Google Scholar 

  27. Kargin, A.V., Babarina, I.I., Bogatikov, O.A., et al., Paleoproterozoic Kimozero kimberlite (Karelian Craton): geological setting and geochemical typing, Dokl. Earth Sci., 2015, vol. 465, no. 1, pp. 1135–1138.

    Article  Google Scholar 

  28. Kirnarsky, Yu.M., Osokin, A.S., Sholokhnev, V.V., and Kholodilov, N.R., New data on composition of rocks of the Tiksheozero massif (Northern Karelia), Sb. Novoe v mineralogii Karelo-Kol’skogo regiona (New in Mineralogy of the Karelia–Kola Region), Petrozavodsk: Kar. NTs AN SSSR, 1990, pp. 39–58.

  29. Kjarsgaard, B.A. and Hamilton, D.L., Liquid immiscibility and the origin of alkali-poor carbonatites, Mineral. Mag., 1988, vol. 52, pp. 43–55.

    Article  Google Scholar 

  30. Kogarko, L.N. and Zartman, R.E., A Pb isope investigation of the Guli Massif, Maimecha-Kotuy alkaline–ultramafic complex, Siberian flood basalt province, Polar Siberia, Mineral. Petrol., 2007, vol. 89, pp. 113–132.

    Article  Google Scholar 

  31. Kogarko, L.N. and Veselovskiy, R., Geodynamic origin of carbonatites from the absolute paleotectonic reconstructions, J. Geodynamics, 2019, vol. 125, pp. 13–21.

    Article  Google Scholar 

  32. Kuleshevich, L.V., Rare-earth mineralization of the Tiksheozero–Elet’ozero alkaline complex (Northern Karelia), Sb. Geologiya i poleznye iskopaemye Karelii (Geology and Mineral Resources of Karelia), Petrozavodsk: GI KarNTs RAN, 2016,vol. 18, pp. 71–87.

    Google Scholar 

  33. De La Roche, H., Leterrier, J., Grandclaude, P., and Marchal, M., A classification of volcanic and plutonic rocks using R1–R2 diagram and major-element analyses: its relationships with current nomenclature, Chem. Geol., 1980, vol. 29, pp. 183–210.

    Article  Google Scholar 

  34. Lee, W.J. and Wyllie, P.J., Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 1–16.

    Article  Google Scholar 

  35. Ma, G.S.-K., Wang, L.L., Malpas, J., et al., Melt-pockets and spongy clinopyroxenes in mantle xenoliths, The Earth’s Heterogeneous Mantle, Khan, A. and Deschamps, F., Eds., Heidelberg: Springer International Publishing, 2015.

    Google Scholar 

  36. Mann, U., Marks, M., and Markl, G., Influence of oxygen fugacity on mineral compositions in peralkaline melts: influence of oxygen fugacity on mineral compositions in peralkaline melts the Katzenbuckel Volcano, Southwest Germany, Lithos, 2006, vol. 91, pp. 262–285.

    Article  Google Scholar 

  37. Marks, M. and Markl, G., Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilimaussaq intrusion, South Greenland, as deduced from phase equilibria, J. Petrol., 2001, vol. 42, pp. 1947–1969.

    Article  Google Scholar 

  38. Martin, L., Schmidt, M.W., Mattson, H.B., and Gunther, D., Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1-3 GPa, J. Petrol., 2013, vol. 54, pp. 2301–2338.

    Article  Google Scholar 

  39. Maruyama, S., Plume tectonics, J. Geol. Soc. Japan, 1994, vol. 100, p. 24.

    Article  Google Scholar 

  40. McDonoug, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  41. McKenzie, D. and O’Nions, R.K., Partial melt distributions from inversion of rare earth element concentrations, J. Petrol., 1991, vol. 32, pp. 1021–1091.

    Article  Google Scholar 

  42. Nelson, D.R., Chivas, A.R., Chappell, B.W., and McCulloch, M.T., Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources, Geochim. Cosmochim Acta, 1988, vol. 52, pp. 1–17.

    Article  Google Scholar 

  43. Nosova, A.A., Voznyak, A.A., Bogdanova, S.V., et al., Early Cambrian syenite and monzonite magmatism in the southeast of the East European Platform: petrogenesis and tectonic setting, Petrology, 2019, vol. 27, no. 4, pp. 329–369.

    Article  Google Scholar 

  44. Nykanen, J., Laajoki, K., and Karhu, J.A., Geology and geochemistry of the Early Proterozoic Kortejarvi and Laivajoki carbonatites, Central Fennoscandian Shield, Finland, Bull. Geol. Soc. Finl., 1997, vol. 9, nos. 1–2, pp. 5–30.

    Article  Google Scholar 

  45. Putnis, A. and McConnell, J.D.C., Principles of Mineral Behavior, Wiley, 1980.

    Google Scholar 

  46. Petrograficheskii kodeks. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code. Magmatic, Metamorphic, Metasomatic, and Impact Rocks), 3rd Ed., St. Petersburg: VSEGEI, 2009.

  47. Potter, N.J., Kamenetsky, V.S., Simonetti, A., and Goemann, K., Different types of liquid immiscibility in carbonatite magmas: a case study of the Oldoinyo Lengai, Chem. Geol., 2017, vol. 455, pp. 376–384.

    Article  Google Scholar 

  48. Priyatkina, N., Khudoley, A.K., Ustinov, V.N., and Kullerude, K., 1.92 Ga kimberlitic rocks from Kimozero, NW Russia: their geochemistry, tectonic setting, and unusual field occurrence, Precambrian Res., 2014, vol. 249, pp. 162–179.

    Article  Google Scholar 

  49. Putintseva, E.V. and Spiridonov, E.M., Russia’ oldest diamondiferous kimberlites and metakimberlites of Kimozero, Karelia, Novye Dannye o Mineralakh, 2016, vol. 51, pp. 62–95.

  50. Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitsky, V.A, Eds., Moscow: MAIK Nauka, 2005.

  51. Ridolfi, F. and Renzulli, A., Calcic amphibolites in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1.130oC and 2.2 GPa, Contrib. Mineral Petrol., 2012, vol. 163, pp. 877–895.

    Article  Google Scholar 

  52. Rodionov, N.V., Belyatsky, B.A., Antonov, A.V., et al., Baddeleyite U-Pb SHRIMP II age determination as a tool for carbonatite massifs dating, Dokl. Earth Sci., 2009, vol. 428, no. 7, pp. 1166–1170.

    Article  Google Scholar 

  53. Ruberti, E., Enrich, G.E.R., Azzone, R.G., et al., The Banhadão alkaline complex, southeastern Brazil: source and evolution of potassic SiO2-undersaturated high-Ca and low-Ca magmatic series, Mineral. Petrol., 2012, vol. 104, pp. 63–80.

    Article  Google Scholar 

  54. Rudnick, R.L. and Fountain, D.M., Nature and composition of the continental crust: a lower crustal perspective, Rev. Geophys., 1995, vol. 33, pp. 267–309.

    Article  Google Scholar 

  55. Rukhlov, A.S., Bell, K., and Amelin, Y., Carbonatites, isotopes and evolution of the subcontinental mantle: an overview, Proc. Symposium on Strategic and Critical Materials British Columbia Geol. Surv., 2015, paper 2015-3, pp. 39–64.

  56. Ryabchikov, I.D., Sharkov, E.V., and Kogarko, L.N., Rhonite from mantle peridotites in syria, Bull. Tethys Geol. Soc. Cairo, 2010, vol. 6, pp. 120–126.

    Google Scholar 

  57. Safronova, G.P., Typochemical features of rock-forming minerals of the Tiksheozero massif, North Karelia, Sb. Mineralogiya dokembriya Karelii (Precambrian Mineralogy of Karelia), Petrozavodsk: Inst. Geol. Karel’sk. Fil. AN SSSR, 1988, pp. 22-41.

    Google Scholar 

  58. Sharkov, E.V., Formirovanie rassloennykh intruzivov i svyazannogo s nimi orudeneniya (Formation of Layered Intrusions and Related Mineralization), Moscow: Nauchnyi Mir, 2006.

  59. Sharkov, E.V. and Bogina, M.M., Evolution of Paleoproterozoic magmatism: geology, geochemistry, and isotopic constraints, Stratigraphy. Geol. Correlation, 2006, vol. 14, no. 4, pp. 345–367.

    Article  Google Scholar 

  60. Sharkov, E.V. and Chistyakov, A.V., Coronitic textures in the ferrogabbroids of the Elet’ozero intrusive complex (Northern Karelia, Russia) as evidence for the existence of Fe-rich melt. 1. Types of coronas, Geochem. Int., 2017, vol. 55, no. 6, pp. 535–547.

    Article  Google Scholar 

  61. Sharkov, E.V., Belyatsky, B.V., Bogina, M.M., et al., Genesis and age of zircon from alkali and mafic rocks of the Elet’ozero Complex, North Karelia, Petrology, 2015, vol. 23, no. 3, pp. 259–280.

    Article  Google Scholar 

  62. Sharkov, E., Bogina, M., and Chistyakov, A., Magmatic systems of large continental igneous provinces, Geosci. Front., 2017, vol. 8, no. 4, p. 621–640.

    Article  Google Scholar 

  63. Sharkov E.V., Chistyakov A.V., Shchiptsov V.V., et al., Origin of Fe–Ti oxide mineralization in the Middle Paleoproterozoic Elet’ozero syenite–gabbro intrusive complex (Northern Karelia, Russia), Geol. Ore Deposits, 2018, vol. 60, no. 2, pp. 172–200.

    Article  Google Scholar 

  64. Sharkov, E.V., Chistyakov, A.V., Bogina, M.M., et al., Ultramafic–alkaline–carbonatite complexes as a result of two-stage melting of a mantle plume: evidence from the Mid-Paleoproterozoic Tiksheozero Intrusion, Northern Karelia, Russia, Dokl. Earth Sci., 2019, vol. 486, no. 2, pp. 638–643.

    Article  Google Scholar 

  65. Sharkov, E.V., Bogina, M.M., Chistyakov, A.V., and Zlobin, V.L., The evolution of large igneous provinces in the Earth’s history: the Eastern Baltic Shield, J. Volcanol. Seismol., 2020, vol. 14, no. 5, pp. 327–340.

    Article  Google Scholar 

  66. Shchiptsov, V.V., Bubnova, T.P., Garanzha, A.V., et al., Geological-technological and economic assessment of resource potential of carbonatites of the Tiksheozero massif ((formation of ultramafic alkaline rocks and carbonatites), Geologiya i poleznye iskopaemye Karelii (Geology and Mineral Resources of Karelia), Petrozavodsk: GI KarNTs, 2007, vol. 10, pp. 159–170.

    Google Scholar 

  67. Smith, P.M. and Asimow, P.D., Adiabat_1ph: a new front-end to the MELTS, pMELTS, and pHMELTS models, Geochem. Geophys., 2005, vol. 6, p. Q02004.

    Google Scholar 

  68. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., et al., Precision (ICP-MS, LA-ICP-MS) analysis of chemical composition of rocks and minerals: technique and assessment of result accuracy by the example of the Early Precambrian mafic complexes, Tr. KarNTs Ross. Akad. Nauk, Ser. Geol. Dokembriya, 2015, no. 7, pp. 54-73.

  69. Tichomirowa, M., Grosche, G., Götze, J., et al., The mineral isotope composition of two Precambrian carbonatite complexes from the Kola alkaline province - alteration versus primary magmatic signatures, Lithos, 2006, vol. 91, pp. 229–249.

    Article  Google Scholar 

  70. Tichomirowa, M., Whitehouse, M.J., Gerdes, A., et al., Different zircon recrystallization types in carbonatites caused by magma mixing: evidence from U-Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia, Chem. Geol., 2013, vol. 353, pp. 173–198.

    Article  Google Scholar 

  71. Tuttle, O.F. and Gittins, J., Carbonatites. New York: Wiley Interscience, 1966.

    Google Scholar 

  72. Wager, L.P. and Brown, G.M., Layered Igneous Rocks, Edinburgh: Oliver and Boyd, 1968.

    Google Scholar 

  73. Vasil’ev, Yu.R., Hyperbasites of alkaine-ultramafic complexes, Magmaticheskie gornye porody. Ul’traosnovnye porody (Igneous Rocks. Ultramafic Rocks), Laz’ko, E.E. and Sharkov, E.V., Eds., Moscow: Nauka, 1988, pp. 172–195.

  74. Verwoerd, W.J. and Du Toit, M.C., The Phalaborwa and Schiel complexes, The Geology of South Africa, Johnson, M.R., Anhaeusser, C.R., and Thomas, R.J., Eds., Johannesburg: Council for Geosciences, Pretoria, 2006, pp. 291–318.

    Google Scholar 

  75. Wang, C.Y. and Zhou, M.-F., New textural and mineralogical constraints on the origin of the Hongge Fe–Ti–V oxide deposit, SW China, Mineral. Deposita, 2013, vol. 48, pp. 787–798.

    Article  Google Scholar 

  76. Weidendorfer, D., Schmidt, M.W., and Mattsson, H.B., Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonates on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites, Contrib. Mineral. Petrol., 2016, vol. 171, pp. 1–29.

    Article  Google Scholar 

  77. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  78. Wooley, A.R. and Church, A.A., Extrusive carbonatites: a brief review, Lithos, 2005, vol. 85, pp. 1–14.

    Article  Google Scholar 

  79. Wooley, A.R. and Kjarsgaard, B.A., Carbonatite occurrences of the world: map and database, Geol. Survey Canada, 2008, Open File 5796.

  80. Wu, F.-Y., Yang, Y.-H., Li, Q.-L., et al., In situ determination of U-Pb ages and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite complex, South Africa, Lithos, 2011, vol. 127, pp. 309–322.

    Article  Google Scholar 

  81. Wyllie, P.J., Origin of carbonatites: evidence from phase equilibrium studies, Carbonatites: Genesis and Evolution, Bell, K., Eds., London: Unwin Hyman, 1989.

    Google Scholar 

  82. Wyllie, P.J. and Lee, W.-J., Kimberlites, carbonatites, peridotites and silicate–carbonate liquid immiscibility explained in parts of the system CaO–(Na2O + K2O)–(MgO + FeO)–(SiO2 + Al2O3), Proc. 7th International Kimberlite Conference. Cape Town: Red Roof Design, 1999, pp. 912–932.

  83. Yaxley, G.M., Crawford, A.J., and Green, D.H., Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia, Earth Planet. Sci. Lett., 1991, vol. 107, pp. 305–317.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Nosova, A.V. Girnis, and anonymous reviewer for valuable comments, which significantly improved the manuscript.

Funding

This work was made in the framework of the State Tasks of the IGEM RAS (project no. 121041500222-4) and Institute of Geology of the Karelian Research Center of the RAS (theme NIR-210, Raw Mineral Department)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Sharkov or M. M. Bogina.

Additional information

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharkov, E.V., Chistyakov, A.V., Bogina, M.M. et al. Petrology of the Mid-Paleoproterozoic Tiksheozero UltramaficAlkalineCarbonatite Complex (Northern Karelia). Petrology 29, 475–501 (2021). https://doi.org/10.1134/S0869591121050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121050076

Keywords:

Navigation