Skip to main content
Log in

Functional Interhemispheric Asymmetry of Human Brain and Audition

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review presents the current understanding of interhemispheric asymmetry of the human brain activity, recorded by electrophysiological and hemodynamic methods using various sound features. Along with the anatomical differences which may exist between the auditory cortices of the left and right brain hemispheres, the authors consider how lateralization of auditory responses depends on the parameters of sound stimulation and what patterns of interhemispheric asymmetry can be found in auditory evoked potentials (AEP) elicited during spatial processing of sound stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Clarke, S. and Morosan, P., Architecture, connectivity and transmitter receptor in human auditory cortex, in Human Auditory Cortex, Poeppel, D., Overath, T., Popper, A., and Fay, R., Eds., New-York: Springer-Verlag, 2012, p. 11.

  2. Tervaniemi, M. and Hugdahl, K., Lateralization of auditory cortex functions, Brain Res. Rev., 2003, vol. 43, p. 231.

    Article  PubMed  Google Scholar 

  3. Shaw, M., Hämäläinen, M., and Gutschalk, A., How anatomical asymmetry of human auditory cortex can lead a rightward bias in auditory evoked fields, NeuroImage, 2013, vol. 74, p. 22.

    Article  PubMed  Google Scholar 

  4. Rademacher, J., Morosan, P., Schleicher, A., et al., Human auditory cortex in women and men, NeuroReport, 2001, vol. 12, p. 1561.

    Article  CAS  PubMed  Google Scholar 

  5. Geschwind, N. and Levitsky, W., Human brain: left-right asymmetries in temporal speech region, Science, 1968, vol. 161, p. 186.

    Article  CAS  PubMed  Google Scholar 

  6. Westbury, C.F., Zatorre, R.J., and Evans, A.C., Quantifying variability in planum temporale: a probability map, Cereb. Cortex, 1999, vol. 9, p. 392.

    Article  CAS  PubMed  Google Scholar 

  7. Binder, J.R., Frost, J.A., Hammake, T.A., et al., Function of the left planum temporale in auditory and linguistic processing, Brain, 1996, vol. 119, p. 1239.

    Article  PubMed  Google Scholar 

  8. Good, C.D., Johnsrude, I., Ashburner, R.N., et al., Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains, NeuroImage, 2001, vol. 14, p. 685.

    Article  CAS  PubMed  Google Scholar 

  9. Jäncke, L. and Steenmetz, H., Anatomic brain asymmetries and their relevance for functional asymmetries, in The Asymmetrical Brain, Hughdahl, K. and Davidson, R.J., Eds., Cambridge, MA: MIT Press, 2004, p. 187.

    Google Scholar 

  10. Schlaug, G., Jäncke, L., Huang, Y., and Steinmetz, H., In vivo evidence of structural brain asymmetry in musicians, Science, 1995, vol. 267, p. 699.

    Article  CAS  PubMed  Google Scholar 

  11. Rademacher, J., Morosan, P., Schleicher, A., et al., Human primary auditory cortex in women and men, NeuroReport, 2001, vol. 12, no. 8, p. 1561.

    Article  CAS  PubMed  Google Scholar 

  12. Penhune, V.B., Zatorre, R.J., MacDonald, J.D., and Evans, A.C., Interhemispheric anatomical differences in human primary cortex; probabilistic mapping and volume measurement resonance scans, Cereb. Cortex, 1996, vol. 6, p. 661.

    Article  CAS  PubMed  Google Scholar 

  13. Penhune, V., Cismaru, R., Dorsaint-Pierre, R., et al., The morphometry of auditory cortex in the congenitally deaf measured MRI, NeuroImage, 2003, vol. 20, p. 1215.

    Article  PubMed  Google Scholar 

  14. Dorsaint-Pierre, R., Penhune, V., Watkins, K., et al., Asymmetries of the planum temporale and Heschl’s gyrus: relationship to language lateralization, Brain, 2006, vol. 129, p. 1164.

    Article  PubMed  Google Scholar 

  15. Anderson, B., Southern, B., and Powers, R., Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study, Neuropsychiatry, Neuropsychol., Behav. Neurol., 1999, vol. 12, p. 247.

    CAS  Google Scholar 

  16. Galuske, R., Schlote, W., Bratzke, H., and Singer, W., Interhemispheric asymmetries of the modular structure in human temporal cortex, Science, 2000, vol. 289, p. 1946.

    Article  CAS  PubMed  Google Scholar 

  17. Chance, S., Casanova, M., Switala, A., and Crow, T., Microcolumnar structure in Heschl’s gyrus and planum temporale: asymmetries in relation to sex and callosal fiber number, Neuroscience, 2006, vol. 143, p. 1041.

    Article  CAS  PubMed  Google Scholar 

  18. Hutsler, J.J. and Gazzaniga, M.S., Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features, Cereb. Cortex, 1996, vol. 6, p. 260.

    Article  CAS  PubMed  Google Scholar 

  19. Morosan, P., Rademacher, J., Schleicher, A., et al., Human primary auditory cortex: cytoarchitectonie subdivisions and mapping into a spatial reference system, NeuroImage, 2001, vol. 13, p. 684.

    Article  CAS  PubMed  Google Scholar 

  20. Mazziotta, J.C., Phelps, M.E., Carson, D.E., and Kuhl, D.E., Tomographic mapping of human celebral metabolism: auditory stimulation, Neurology, 1982, vol. 32, p. 921.

    Article  CAS  PubMed  Google Scholar 

  21. Zatorre, R.J., Evans, A.C., Meyer, E., and Gjedde, A., Lateralization of phonetic and pitch discrimination in speech processing, Science, 1992, vol. 256, p. 846.

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto, R., Homae, F., Nakajima, K., et al., Functional differentiation in the human auditory and language areas revealed by dichotic listening tasks, NeuroImage, 2000, vol. 12, p. 147.

    Article  CAS  PubMed  Google Scholar 

  23. Belin, P. and Zatorre, R.J., “What,” “where,” and “how” in auditory cortex, Nat. Neurosci., 2000, vol. 3, p. 965.

    Article  CAS  PubMed  Google Scholar 

  24. Alho, K., Connolly, J.E., Cheour, M., et al., Hemispheric lateralization in preattentive processing of speech sounds, Neurosci. Lett., 1998, vol. 258, p. 9.

    Article  CAS  PubMed  Google Scholar 

  25. Szymanski, M.D., Perry, D.W., Gage, N.M., et al., Magnetic source imaging of late evoked field responses to vowel: toward an assessment of hemispheric dominance for language, J. Neurosurg., 2001, vol. 94, p. 445.

    Article  CAS  PubMed  Google Scholar 

  26. Zatorre, R.J., Evans, A.C., and Meyer, E., Neural mechanisms underlying melodic perception and memory for pitch, J. Neurosci., 1994, vol. 14, p. 1908.

    Article  CAS  PubMed  Google Scholar 

  27. Zatorre, R.J., Belin, P., and Penhume, V.B., Structure and function of auditory cortex: music and speech, Trends Cognit. Sci., 2002, vol. 6, p. 37.

    Article  Google Scholar 

  28. Griffiths, T.D., Johnsrude, I., Dean, J.L., and Green, G.G., A common neural substrate for the analysis of pitch and duration pattern in segmented sound, NeuroReport, 1999, vol. 10, p. 3825.

    Article  CAS  PubMed  Google Scholar 

  29. Zatorre, R.J. and Belin, P., Spectral and temporal processing in human auditory cortex, Cereb. Cortex, 2001, vol. 11, p. 946.

    Article  CAS  PubMed  Google Scholar 

  30. Jamison, H.L., Watkins, K.E., Bishop, D.V., and Matthews, P.M., Hemispheric specialization for processing auditory nonspeach stimuli, Cereb. Cortex, 2006, vol. 16, p. 1266.

    Article  PubMed  Google Scholar 

  31. Okamoto, H., Strake, H., Draganova, R., and Pantev, C., Hemisheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change, Cereb. Cortex, 2009, vol. 19, p. 2290.

    Article  PubMed  Google Scholar 

  32. Pantev, C., Bertrand, O., Eulitz, C., et al., Specific tonotopic organization of different areas of human auditory cortex revealed by stimulation magnetic and electric recordings, Electroencephalogr. Clin. Neurophysiol., 1995, vol. 94, p. 26.

    Article  CAS  PubMed  Google Scholar 

  33. Eggermont, J.J. and Ponton, C.W., The neurophysiology of auditory perception from single units to evoked potentials, Audiol. Neurotol., 2002, vol. 7, p. 71.

    Article  Google Scholar 

  34. Liegeois-Chauvel, C., Giraand, K., Badier, J.M., et al., Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the human auditory cortex, Ann. N.Y. Acad. Sci., 2001, vol. 930, p. 117.

    Article  CAS  PubMed  Google Scholar 

  35. Howard, M. and Poeppel, D., Hemispheric asymmetry in mid and long latency neuromagnetic responces ti single clicks, Hear. Res., 2009, vol. 257, p. 41.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gabriel, D., Venillet, E., Ragot, R., et al., Effect of stimulus frequency and stimulation site on N1m response of the human auditory cortex, Hear. Res., 2004, vol. 197, p. 55.

    Article  CAS  PubMed  Google Scholar 

  37. Huotilanen, M., Wincler, I., Alho, K., et al., Combined mapping of human auditory EEG and MEG responses, Electroencephalogr. Clin. Neurophysiol., 1998, vol. 108, p. 370.

    Article  Google Scholar 

  38. Kanno, A., Nakasoto, N., Murayama, N., and Yoshimoto, T., Middle and long latency peak sources in auditory evoked magnetic fields for tone bursts in humans, Neurosci. Lett., 2000, vol. 293, p. 187.

    Article  CAS  PubMed  Google Scholar 

  39. Rosburg, T., Haueisen, J., and Sauer, H., Habituation of the auditory evoked field component N100m and its dependence on stimulus duration, Clin. Neurophysiol., 2002, vol. 113, p. 421.

    Article  CAS  PubMed  Google Scholar 

  40. Jin, C.Y., Ozaki, I., Suzuki, Y., et al., Hemispheric asymmetry in N100m current sources in auditory evoked fields: comparison of ipsilateral versus contralateral responses, Int. Congr. Ser., 2007, vol. 1300, p. 61.

    Article  Google Scholar 

  41. Poeppel, D., Phillips, C., Yellin, E., et al., Processing of vowels in supratemporal auditory cortex, Neurosci. Lett., 1997, vol. 221, p. 145.

    Article  CAS  PubMed  Google Scholar 

  42. Kirveskari, E., Salmelin, R., and Kari, R., Neuromagnetic responses to vowels vs. tones reveal hemispheric lateralization, Clin. Neurophysiol., 2006, vol. 117, p. 643.

    Article  CAS  PubMed  Google Scholar 

  43. Gage, N., Roberts, T., and Hickok, G., Hemispheric asymmetries in auditory evoked neuromagnetic fields in response to place of articulation contrasts, Cognit. Brain Res., 2002, vol. 14, p. 303.

    Article  Google Scholar 

  44. Obleser, J., Lahiri, A., and Eulitz, C., Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds post syllable onset, NeuroImage, 2003, vol. 20, p. 1839.

    Article  PubMed  Google Scholar 

  45. König, R., Sieluycki, C., Heil, P., and Scheich, H., Effects of the task of categorizing FM direction on auditory evoked magnetic fields in the human auditory cortex, Brain Res., 2008, vol. 1220, p. 102.

    Article  CAS  PubMed  Google Scholar 

  46. Hine, J. and Debener, S., Late auditory evoked potentials asymmetry revisited, Clin. Neurophysiol., 2007, vol. 118, p. 1274.

    Article  PubMed  Google Scholar 

  47. Pardo, P.J., Mäkelä, J.P., and Sams, M., Hemispheric differences in processing tone frequency and amplitude modulations, NeuroReport, 1999, vol. 10, p. 3018.

    Article  Google Scholar 

  48. Loveless, N., Temporal integration in auditory sensory memory: neuromagnitic evidence, Electroencephalogr. Clin. Neurophysiol., 1996, vol. 100, p. 220.

    Article  CAS  PubMed  Google Scholar 

  49. McEvoy, L., Levanen, S., and Loveless, N., Temporal characteristics of auditory sensory memory: neuromagnetic evidence, Psychopysiology, 1997, vol. 34, p. 308.

    Article  CAS  Google Scholar 

  50. Leonard, C.M., Towler, S., Welcome, S., et al., Lateral asymmetry in the shape of Heschl’s gyrus, in Neurosciense, Washington, DC: Soc. Neurosci., 2008, p. 15.

    Google Scholar 

  51. Poeppel, D., The analysis of speech in different temporal integration windows: cerebral lateralization as asymmetric sampling in time, Speech Commun., 2003, vol. 41, p. 245.

    Article  Google Scholar 

  52. Belin, P., McAdams, S., Smith, B., et al., The Functional anatomy of sound intensity discrimination, J. Neurosci., 1998, vol. 18, p. 6388.

    Article  CAS  PubMed  Google Scholar 

  53. Milner, B., Laterality effects in audition, in Interhemispheric Relations and Cerebral Dominance, Mountcastle, V., Ed., Baltimore, MD: John Hopkins Univ. Press, 1962, p. 177.

    Google Scholar 

  54. Brancucci, A., Babiloni, C., Rossini, P.M., and Romani, C., Right hemisphere specialization for intensity discrimination of musical and speech sounds, Neuropsychologia, 2005, vol. 43, p. 1916.

    Article  PubMed  Google Scholar 

  55. Reiterer, S., Erb, M., Grodd, W., and Wildgruber, D., Cerebral processing of timbre and loudness: fMRI evidence for contribution of Broca’s area to basic auditory discrimination, Brain Imaging Behav., 2008, vol. 2, p. 1.

    Article  Google Scholar 

  56. Brechmann, A. and Scheich, H., Hemispheric shifts of sound representation in auditory cortex with conceptual listening, Cereb. Cortex, 2005, vol. 15, p. 578.

    Article  PubMed  Google Scholar 

  57. Reiterer, S., Erb, M., Droll, C.D., et al., Impact of task difficulty on lateralization of pitch and duration discrimination, NeuroReport, 2005, vol. 16, p. 239.

    Article  PubMed  Google Scholar 

  58. Angenstein, N. and Brechman, A., Division of labor between left and right human auditory cortices during the processing of intensity and duration, NeuroImage, 2013, vol. 83, p. 1.

    Article  PubMed  Google Scholar 

  59. Levine, R.A. and McGaffigan, P., Right-left asymmetries in the human brainstem: auditory evoked potentials, Electroencephalogr. Clin. Neurophysiol., 1983, vol. 55, p. 532.

    Article  CAS  PubMed  Google Scholar 

  60. Levine, R.A., Liderman, J., and Riley, P., The brainstem auditory evoked potential asymmetry is replicable and reliable, Neurophychologia, 1988, vol. 26, p. 603.

    Article  CAS  Google Scholar 

  61. Schönwiesner, M., Krumbholz, K., Rübsamen, R., et al., Hemispheric asymmetry for auditory processing in the human auditory brainstem, thalamus, and cortex, Cereb. Cortex, 2007, vol. 17, p. 492.

    Article  PubMed  Google Scholar 

  62. Middlebrooks, J.C., Xu, L., Furukawa, S., and Macpherson, E.A., Cortical neurons that localize sounds, Neuroscientist, 2002, vol. 8, no. 1, p. 73.

    Article  PubMed  Google Scholar 

  63. McAlpine, D., Jiang, D., and Palmer, A.R., A neural code for low-frequency sound localization in mammals, Nat. Neurosci., 2001, vol. 4, p. 396.

    Article  CAS  PubMed  Google Scholar 

  64. Stecker, G., Harrington, I., and Middlebrooks, J., Location coding by opponent neural populations in the auditory cortex, PloS Biol., 2005, vol. 3, p. 78.

    Article  CAS  Google Scholar 

  65. Magezi, D. and Krumbholz, K., Evidence for opponent-channel coding of interaural time differences in human auditory cortex, J. Neurophisiol., 2010, vol. 104, p. 1997.

    Article  Google Scholar 

  66. Salminen, N., Tiitinen, H., Yrttiaho, S., and May, P.-J., The neural code for interaural time differences in human auditory cortex, J. Acoust. Soc. Am., 2010, vol. 127, p. 60.

    Article  Google Scholar 

  67. Phillips, D.R., Vigneault-MacLeon, B., Boehnke, S., and Hall, S., Acoustic hemifields in the spatial release from masking of speech by noise, J. Am. Acad. Auduol., 2003, vol. 14, p. 518.

    Article  CAS  Google Scholar 

  68. Dingle, R., Hall, S., and Phillips, D., A midline azimuthal channel in human spatial hearing, Hear. Res., 2010, vol. 268, p. 67.

    Article  PubMed  Google Scholar 

  69. Dingle, R., Hall, S., and Phillips, D., The three-channel model of sound localization mechanisms: interaural level differences, J. Acoust. Soc. Am., 2012, vol. 131, no. 5, p. 4023.

    Article  PubMed  Google Scholar 

  70. Briley, P.M., Kitterick, P., and Summerfield, A., Evidence for opponent process analysis of sound source location in humans, J. Assoc. Res. Otolaryngol., 2013, vol. 14, p. 83.

    Article  PubMed  Google Scholar 

  71. Ungan, P., Yagcioglu, S., and Goksoy, C., Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources, Clin. Neurophysiol., 2006, vol. 112, p. 485.

    Article  Google Scholar 

  72. Krumbholz, K., Schönwiesner, M., von Cramon, D., et al., Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe, Cereb. Cortex, 2005, vol. 15, p. 317.

    Article  PubMed  Google Scholar 

  73. Krumbholz, K., Hewson-Stoate, N., and Schönwiesner, M., Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices, J. Neurophysiol., 2007, vol. 97, p. 1649.

    Article  PubMed  Google Scholar 

  74. Palomäki, K., Tiitinen, H., Mäkinen, V., et al., Cortical processing of speech sounds and their analogues in a spatial auditory environment, Cognit. Brain Res., 2002, vol. 14, p. 294.

    Article  Google Scholar 

  75. Palomäki, K., Tiitinen, H., Mäkinen, V., et al., Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques, Cognit. Brain Res., 2005, vol. 24, p. 364.

    Article  Google Scholar 

  76. Tiitinen, H., Salminen, N., Palomäki, K., et al., Neuromagnetic recordings reveal the temporal dinamics of auditory spatial processing in the human cortex, Neurosci. Lett., 2006, vol. 396, p. 17.

    Article  CAS  PubMed  Google Scholar 

  77. Salminen, N., Tiitinen, H., Miettinen, I., et al., Asymmetrical representation of auditory space in human cortex, Brain Res., 2010, vol. 1306, p. 93.

    Article  CAS  PubMed  Google Scholar 

  78. Itoh, K., Yumoto, M., and Uno, A., Temporal stream of cortical representation for auditory spatial localization in human hemispheres, Neurosci. Lett., 2000, vol. 292, p. 215.

    Article  CAS  PubMed  Google Scholar 

  79. Hirstein, M., Hausmann, M., and Lewald, J., Functional cerebral asymmetry in auditory motion perception, Laterality, 2006, vol. 12, p. 87.

    Article  Google Scholar 

  80. Johnson, B. and Hautus, M., Processing of binaural information in human auditory cortex: Neuromagnetic responses to interaural timing and level differences, Neuropsychologia, 2010, vol. 48, p. 2610.

    Article  PubMed  Google Scholar 

  81. Xiang, J., Chuang, S., Wilson, D., et al., Sound motion evoked magnetic fields, Clin. Neurophysiol., 2002, vol. 113, p. 1.

    Article  PubMed  Google Scholar 

  82. Griffiths, T., Rees, G., Rees, A., et al., Right parietal cortex is involved in the perception of sound movement in humans, Nat. Neurosci., 1998, vol. 1, p. 74.

    Article  CAS  PubMed  Google Scholar 

  83. Kaiser, J., Lutzenberger, W., Preissl, H., et al., Right-hemisphere dominance for the processing of sound source lateralization, J. Neurosci., 2000, vol. 20, p. 6631.

    Article  CAS  PubMed  Google Scholar 

  84. Näätänen, R. and Picton, T., The N1 wave of human electric and magnetic response to sound: a review and an analysis of component structure, Psychophysiology, 1987, vol. 24, p. 375.

    Article  PubMed  Google Scholar 

  85. Vaitulevich, S.F., Petropavlovskaya, E.A., Shestopalova, L.B., and Nikitin, N.I., Interhemispheric asymmetry of the total activity of the human brain during the localization of the sound source, Sens. Sist., 2015, vol. 29, no. 2, p. 148.

    Google Scholar 

  86. Schönwiesner, M., Rübsamen, R., and von Cramon, S., Spectral and temporal processing in the human auditory cortex-revisited, Ann. N.Y. Acad. Sci., 2005, vol. 1060, p. 89.

    Article  PubMed  Google Scholar 

  87. Scherg, M. and von Cramon, D., Evoked dipole source potentials of the human auditory cortex, Electroencephalogr. Clin. Neurophysiol., 1986, vol. 65, p. 344.

    Article  CAS  PubMed  Google Scholar 

  88. Yvert, B., Fisher, C., Bertrand, O., and Pernier, J., Location of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models, NeuroImage, 2005, vol. 28, p. 40.

    Article  Google Scholar 

  89. Mulert, C., Janger, L., and Propp, S., Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRT, NeuroImage, 2005, vol. 28, p. 49.

    Article  PubMed  Google Scholar 

  90. Debener, S., Strobel, A., and Sorger, B., Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of ballisto-cardiogram artefact, NeuroImage, 2007, vol. 34, p. 587.

    Article  PubMed  Google Scholar 

  91. Shestopalova, L.B., Petropavlovskaya, E.A., Vaitulevich, S.F., and Nikitin, N.I., Topography of activity evoked in the human brain during discrimination of moving sound stimuli, Neurosci. Behav. Physiol., 2017, vol. 47, no. 1, p. 83.

    Article  Google Scholar 

  92. Shestopalova, L.B., Petropavlovskaia, E.A., Vaitulevich, S.Ph., and Nikitin, N.I., Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion, Neuropsychologia, 2016, vol. 91, p. 465.

    Article  CAS  PubMed  Google Scholar 

  93. Shestopalova, L.B., Petropavlovskaya, E.A., Semenova, V.V., and Nikitin, N.I., Event-related potentials to sound stimuli with delayed onset of motion in conditions of active and passive listening, Neurosci. Behav. Physiol., 2018, vol. 48, no. 1, p. 90.

    Article  Google Scholar 

  94. Dietz, M.J., Friston, K.J., Mattingley, J.B., et al., Effective connectivity reveals right hemisphere dominance in audiospatial perception: implications for models of spatial neglect, J. Neurosci., 2014, vol. 34, p. 5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Teshiba, T.M., Ling, J., Ruhl, D.A., et al., Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning, Cereb. Cortex, 2013, vol. 23, p. 560.

    Article  PubMed  Google Scholar 

  96. Mesulam, M.M., Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events, Philos. Trans. R. Soc., B, 1999, vol. 354, p. 1325.

  97. Deouell, L.Y., Bentin, S., and Giard, M.H., Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators, Psychophysiology, 1998, vol. 35, p. 355.

    Article  CAS  PubMed  Google Scholar 

  98. Getzmann, S., Effect of auditory motion velocity on reaction time and cortical processes, Neuropsychologia, 2009, vol. 47, p. 2625.

    Article  PubMed  Google Scholar 

  99. Getzmann, S., Auditory motion perception: onset position and motion direction are encoded in discrete processing stages, Eur. J. Neurosci., 2011, vol. 33, p. 1339.

    Article  PubMed  Google Scholar 

  100. Getzmann, S. and Lewald, J., Cortical processing of change in sound location: Smooth motion versus discontinuous displacement, Brain Res., 2012, vol. 1466, p. 119.

    Article  CAS  PubMed  Google Scholar 

  101. Näätänen, R., Paavilainen, P., Rinne, T., and Alho, K., The mismatch negativity (MMN) in basic research of auditory processing: a review, Clin. Neurophysiol., 2007, vol. 118, p. 2544.

    Article  PubMed  Google Scholar 

  102. Alain, C., Woods, D., and Ogawa, K., Brain indices of automatic pattern processing, NeuroReport, 1994, vol. 6, p. 140.

    Article  CAS  PubMed  Google Scholar 

  103. Alain, C., Woods, D., and Knight, R., A distributed cortical network for auditory sensory memory in humans, Brain Res., 1998, vol. 812, p. 23.

    Article  CAS  PubMed  Google Scholar 

  104. Paavilainen, P., Alho, K., Reinikainen, K., et al., Right hemisphere dominance of different mismatch negativities, Electroencephalogr. Clin. Neurophysiol., 1991, vol. 78, p. 466.

    Article  CAS  PubMed  Google Scholar 

  105. Levänen, S., Ahonen, A., Hari, R., et al., Deviant auditory stimuli activate human left and right auditory cortex differently, Cereb. Cortex, 1996, vol. 6, p. 288.

    Article  PubMed  Google Scholar 

  106. Deouell, L., Bentin, S., and Soroker, N., Electrophysiologocal evidence for an early (pre-attentive) information processing deficit in patients with right hemisphere damage and unilateral neglect, Brain, 2000, vol. 123, p. 353.

    Article  PubMed  Google Scholar 

  107. Nager, W., Kohlmetz, C., and Joppich, G., Tracking of multiple sound source defined by interaural time differences brain potential evidence in human, Neurosci. Lett., 2003, vol. 344, p. 181.

    Article  CAS  PubMed  Google Scholar 

  108. Kaiser, J. and Lutzenberger, W., Location changes entrance hemispheric asymmetry of magnetic fields evoked by lateralized sound in humans, Neurosci. Lett., 2001, vol. 314, p. 17.

    Article  CAS  PubMed  Google Scholar 

  109. Tata, M. and Ward, I., Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway, Exp. Brain Rev., 2005, vol. 167, p. 481.

    Article  Google Scholar 

  110. Richter, N., Schröger, E., and Rübsamen, R., Hemispheric specialization during discrimination of sound sources reflected by MMN, Neuropsychology, 2009, vol. 47, p. 2652.

    Article  Google Scholar 

  111. Sonnadara, R.R., Alain, C., and Trainor, I., Effects of spatial separation and stimulus probability on event-related potentials elicited by occasional changes in sound location, Brain Res., 2006, vol. 1071, p. 175.

    Article  CAS  PubMed  Google Scholar 

  112. Zatorre, R. and Penhune, V., Spatial localization after excision of human auditory cortex, J. Neurosci., 2001, vol. 21, p. 6321.

    Article  CAS  PubMed  Google Scholar 

  113. Brunetti, M., Belardinelly, P., and Caulo, M., Human brain activation during passive listening to sounds from different locations: an fMRI and MEG, Hum. Brain Map., 2005, vol. 26, p. 251.

    Article  CAS  Google Scholar 

  114. Näätänen, R., Kujala, T., and Wincler, I., Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses, Psychophysiology, 2011, vol. 48, p. 4.

    Article  PubMed  Google Scholar 

  115. Opitz, B., Schröger, E., and von Gramon, D., Sensory and cognitive mechanisms for preattentive change detection in auditory cortex, Eur. J. Neurosci., 2005, vol. 21, p. 531.

    Article  CAS  PubMed  Google Scholar 

  116. Schröger, E., On the detection of auditory deviants: a pre-attentive activation model, Psychophysiology, 1997, vol. 34, p. 245.

    Article  PubMed  Google Scholar 

  117. Maess, B., Jacobsen, T., Schröger, E., and Friederici, A.D., Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change, NeuroImage, 2007, vol. 37, p. 561.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Program of Fundamental Scientific Research of State Academies for 2013–2020 (SP-14, Section 63.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Petropavlovskaya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaitulevich, S.F., Petropavlovskaya, E.A., Shestopalova, L.B. et al. Functional Interhemispheric Asymmetry of Human Brain and Audition. Hum Physiol 45, 202–212 (2019). https://doi.org/10.1134/S0362119719020129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719020129

Keywords:

Navigation