Skip to main content
Log in

Topography of Activity Evoked in the Human Brain during Discrimination of Moving Sound Stimuli

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to assess interhemisphere asymmetry of the N1, P2, and N250 components of auditory event-related potentials (ERP) and mismatch negativity (MMN) in passive discrimination between moving sound stimuli in an oddball paradigm. Stimulus movement was created using a linear increase in the interaural time delay ΔT in dichotically presented signals. The amplitudes of the N1 and P2 components were greater in the right hemisphere, this being particularly clear in the frontolateral area. The amplitude of the N250 component in the frontolateral and frontomedial areas was greater in the hemisphere contralateral to the sound stimulus. The direction of movement of sound stimuli had no effect on the asymmetry of ERP and MMN components. The right-hemisphere asymmetry of N1 increased with increases in stimulus speed, while asymmetry of P2 was maximal for short movement trajectories. Asymmetry of N250 and MMN was identified in terms of differences between standards and deviants, i.e., a higher-order feature. Thus, these studies demonstrated differences in the nature of interhemisphere asymmetry for the early and late ERP components, reflecting differences in the neural structures supporting primary analysis of the stimulus and higher cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahveninen, J., Kopco, N., and Jääskeläinen, I. P., “Psychophysics and neuronal bases of sound localization in humans,” Hear. Res., 307, 86–97 (2014), DOI: http://dx.doi.org/10.1016/j.heares.2013.07.008.

  • Alain, C., Woods, D. L., and Knight, R., “A distributed cortical network for auditory sensory memory in humans,” Brain Res., 812, 23–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Alain, C., Woods, D. L., and Ogawa, K. H., “Brain indices of automatic pattern processing,” Neuroreport, 6, No. 1, 140–144 (1994).

  • Altman, J. A., Vaitulevich, S., P., Shestopalova, L. B., and Petropavlovskaia, E. A., “How does mismatch negativity refl ect auditory motion?” Hear. Res., 268, 194–201 (2010).

  • Baumgart, F., Gaschler-Markefski, B., Woldorff, M. G., et al., “A movement-sensitive area in auditory cortex,” Nature, 400, 724–726 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Briley, P. M., Kitterick, P. T., and Summerfield, A. Q., “Evidence for opponent process analysis of sound source location in humans,” J. Assoc. Res. Otolaryngol., 14, No. 1, 83–101 (2013), DOI: 10.1007/s10162-012-0356-x.

    Article  PubMed  Google Scholar 

  • Brunetti, M., Belardinelli, P., Caulo, M., et al., “Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study,” Hum. Brain Mapp., 26, 251–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Deouell, L., Y., Bentin, S., and Giard, M. H., “Mismatch negativity in dichotic listening: Evidence for interhemispheric differences and multiple generators,” Psychophysiol., 35, No. 4, 355–365 (1998).

  • Deouell, L., Y., Bentin, S., and Soroker, N., “Electrophysiological evidence for an early (pre-attentive) information processing deficit in patients with right hemisphere damage and unilateral neglect,” Brain, 123, No. 2, 353–365 (2000).

  • Escera, C., Alho K., Winkler, I., and Näätänen, R., “Neural mechanisms of involuntary attention to acoustic novelty and change,” J. Cogn. Neurosci., 10, No. 5, 590–604 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Getzmann, S. and Lewald, J., “Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion,” Hear. Res., 259, 44–54 (2010), DOI: 10.1016/j.heares.2009.09.021.

    Article  PubMed  Google Scholar 

  • Getzmann, S., “Effect of auditory motion velocity on reaction time and cortical processes,” Neuropsychologia, 47, 2625–2633 (2009), DOI: 10.1016/j.neuropsychologia.2009.05.012.

    Article  PubMed  Google Scholar 

  • Giard, M. H., Perrin, F., Pernier, J., and Bouchet, P., “Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related study,” Psychophysiol., 27, 627–640 (1990).

    Article  CAS  Google Scholar 

  • Griffiths, T. D., Rees, G., Rees, A., et al., “Right parietal cortex is involved in the perception of sound movement in humans,” Nat. Neurosci., 1, No. 1, 74–79 (1998).

  • Hart, H. C., Palmer, A. R., and Hall, D. A., “Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties,” Hum. Brain Mapp., 21, 178–190 (2004).

    Article  PubMed  Google Scholar 

  • Johnson, B. W. and Hautus, M., J., “Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences,” Neuropsychologia, 48, 2610–2619 (2010).

  • Kaiser, J. and Lutzenberger, W., “Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans,” Neurosci. Lett., 314, 17–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, J., Lutzenberger, W., Preissl, H., et al., “Right-hemisphere dominance for the processing of sound-source lateralization,” J. Neurosci., 20, 6631–6639 (2000).

    CAS  PubMed  Google Scholar 

  • Krumbholz, K., Hewson-Stoate, N., and Schonwiesner, M., “Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices,” J. Neurophysiol., 97, 1649–1655 (2007).

    Article  PubMed  Google Scholar 

  • Krumbholz, K., Schonwiesner, M., von Cramon, D. Y., et al., “Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe,” Cereb. Cortex, 15, 317–324 (2005).

    Article  PubMed  Google Scholar 

  • Levänen, S., Ahonen, A., Hari, R., et al., “Deviant auditory stimuli activate human left and right auditory cortex differently,” Cereb. Cortex, 6, 288–296 (1996).

    Article  PubMed  Google Scholar 

  • McEvoy, L., Hari, R., Imada, T., and Sams, M., “Human auditory cortical mechanisms of sound lateralization H., “Interaural time differences at sound onset,” Hear. Res., 67, 98–109 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Näätänen, R., Kujala, T., and Winkler, I., “Auditory processing that leads to conscious perception, A unique window to central auditory processing opened by the mismatch negativity and related responses,” Psychophysiology, 48, 4–22 (2011).

    Article  PubMed  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., and Alho, K., “The mismatch negativity (MMN) in basic research of central auditory processing, A review,” Electroencephalogr. Clin. Neurophysiol., 118, 2544–2590 (2007).

  • Nager, W., Kohlmetz, C., Joppich, G., et al., “Tracking of multiple sound sources defi ned by inter-aural time differences, brain potential evidence in humans,” Neurosci. Lett., 344, 181–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Paavilainen, P., Alho K., Reinikainen K., et al., “Right hemisphere dominance of different mismatch negativities,” Electroencephalogr. Clin. Neurophysiol., 78, 466–479 (1991).

  • Palomäki, K. J., Tiitinen, H., Mäkinen, V., et al., “Spatial processing in human auditory cortex, the effects of 3D, ITD, and ILD stimulation techniques,” Brain Res. Cogn. Brain Res., 24, 364–379 (2005).

    Article  PubMed  Google Scholar 

  • Pavani, F., Macaluso, E., Warren, J. D., et al., “A common cortical substrate activated by horizontal and vertical sound movement in the human brain,” Curr. Biol., 12, 1584–1590 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P. and Brugge, J. F., “Progress in neurophysiology of sound localization,” Annu. Rev. Psychol., 36, 245–274, (1985).

    Article  CAS  PubMed  Google Scholar 

  • Richter, N., Schröger, E., and Rübsamen, R., “Hemispheric specialization during discrimination of sound sources refl ected by MMN,” Neuropsychologia, 47, 2652–2659 (2009).

    Article  PubMed  Google Scholar 

  • Rincke, L., Wustenberg, T., Schulze K., and Heinze, H., J., “Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation,” Hear. Res., 170, No. 1–2, 166–178 (2002).

  • Saberi K. and Hafter, E. R., “Experiments on auditory motion discrimination,” in: Binaural and Spatial Hearing in Real and Virtual Environments, Gilkey, R. H. and Anderson, T. R. (eds.), Erlbaum, New Jersey (1997), pp. 315–327.

  • Salminen, N. H., Tiitinen, H., Miettinen, I., et al., “Asymmetrical representation of auditory space in human cortex,” Brain Res., 1306, 9399 (2010).

    Article  Google Scholar 

  • Shestopalova, L. B., Petropavlovskaya, E. A., Vaitulevich, S. F., and Nikitin, N. I., “Appearance of categoriality in the perception of stationary and moving sound stimuli in the characteristics of mismatch negativity,” Fiziol. Cheloveka, 39, No. 2, 114–124 (2013).

    CAS  PubMed  Google Scholar 

  • Takegata, R., Huotilainen, M., Rinne, T., et al., “Changes in acoustic features and their conjunctions are processed by separate neuronal populations,” Neuroreport, 12, 525–529 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Tata, M. S. and Ward, L. M., “Early phase of spatial mismatch negativity is localized to a posterior ‘where’ auditory pathway,” Exp. Brain Res., 167, 481–486 (2005).

    Article  PubMed  Google Scholar 

  • Tiitinen, H., Salminen, N. H., Palomaki, K., J. et al., “Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex,” Neurosci. Lett., 396, 17–22 (2006).

  • Ungan, P., Yagcioglu, S., and Goksoy, C., “Differences between the N1 waves of the responses to interaural time and intensity disparities, scalp topography and dipole sources,” Clin. Neurophysiol., 112, 485–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Vaitulevich, S. F. and Shestopalova, L. B., “Interhemisphere asymmetry in evoked potential in humans and mismatch negativity during localization of a sound source,” Zh. Vyssh. Nerv. Deyat., 59, No. 3, 269–280 (2009).

    CAS  Google Scholar 

  • Vaitulevich, S. F., Petropavlovskaya, E. A., Shestopalova, L. B., and Nikitin, N. I., “Interhemisphere asymmetry in total brain activities in humans during localization of a sound source,” Sensor. Sistemy, 29, No. 1, 63–77 (2015).

    Google Scholar 

  • Woldorff, M. G., Tempelmann, C., Fell, J., et al., “Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography,” Hum. Brain Mapp., 7, No. 1, 49–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Xiang, J., Chuang, S., Wilson, D., et al., “Sound motion evoked magnetic fields,” Clin. Neurophysiol., 113, 1–9 (2002).

    Article  PubMed  Google Scholar 

  • Zatorre, R. J. and Penhune, V. B., “Spatial localization after excision of human auditory cortex,” J. Neurosci., 21, 6321–6328 (2001).

    CAS  PubMed  Google Scholar 

  • Zimmer, U. and Macaluso, E., “High binaural coherence determines successful sound localization and increased activity in posterior auditory areas,” Neuron, 47, 893–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, U., Lewald, J., Erb, M., and Karnath, H. O., “Processing of auditory spatial cues in human cortex. An fMRI study,” Neuropsychologia, 44, 454–461 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Shestopalova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 65, No. 5, pp. 577–596, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestopalova, L.B., Petropavlovskaya, E.A., Vaitulevich, S.F. et al. Topography of Activity Evoked in the Human Brain during Discrimination of Moving Sound Stimuli. Neurosci Behav Physi 47, 83–96 (2017). https://doi.org/10.1007/s11055-016-0368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0368-9

Keywords

Navigation