Skip to main content
Log in

Cerebral Processing of Timbre and Loudness: fMRI Evidence for a Contribution of Broca’s Area to Basic Auditory Discrimination

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Sound timbre and sound volume processing are basic auditory discrimination processes relevant for human language abilities. Regarding lateralization effects, the prevailing hypotheses ascribe timbre processing to the right hemisphere (RH). Recent experiments also point to a role of the RH for volume discrimination. We investigated the relevance of the RH for timbre and volume processing, aiming at finding possible differences in cerebral representation of these acoustic parameters. Seventeen healthy subjects performed two auditory discrimination tasks on tone pairs, differing either in timbre or volume. FMRI was performed using an EPI-sequence on a 1.5 T scanner. Hemodynamic responses emerged in both tasks within a bilateral network of areas, including cingulate and cerebellum, peaking in primary and secondary auditory cortices (core and belt areas). Laterality analyses revealed a significant leftward dominance at the temporal cortex. Task comparison revealed significant activation within Broca’s area during the timbre task and a trend for an increase of right parietal responses during volume processing. These results contribute to a more differentiated view of timbre processing. Additionally to the engagement of the right temporal cortex during processing of musical timbre, there seem to be language related aspects of timbre that are preferentially processed in the left hemisphere. These findings are discussed within the framework of a model of timbre perception comprising two differentially lateralized subprocesses. Processing of spectral cues (harmonic structure) linked to the right hemisphere and processing of temporal cues (i.e. attack-decay dynamics) linked to the left hemisphere. Moreover, activation of Broca’s area linked to the timbre task indicates a participation of this area in discriminating phonetic changes of the vowel-like non-speech signals, encouraging the argument that basic acoustic cue processing at a pre- or non-speech level is represented within this “classical language area.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann, H., Mathiak, K., & Ivry, R. (2004). Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behavioral and Cognitive Neuroscience Reviews, 3(1), 14–22.

    Article  PubMed  Google Scholar 

  • Belin, P., McAdams, S., Smith, B., Savel, S., Thivard, L., Samson, S., et al (1998). The functional anatomy of sound intensity discrimination. Journal of Neuroscience, 18(16), 6388–6394.

    PubMed  CAS  Google Scholar 

  • Boucher, R., & Bryden, M. P. (1997). Laterality effects in the processing of melody and timbre. Neuropsychologia, 35(11), 1467–1473.

    Article  PubMed  CAS  Google Scholar 

  • Brancucci, A., Babiloni, C., Rossini, P. M., & Romani, G. L. (2005). Right hemisphere specialization for intensity discrimination of musical and speech sounds. Neuropsychologia, 43(13), 1916–1923.

    Article  PubMed  Google Scholar 

  • Brancucci, A., & San Martini, P. (2003). Hemispheric asymmetries in the perception of rapid (timbral) and slow (nontimbral) amplitude fluctuations of complex tones. Neuropsychology, 17(3), 451–457.

    Article  Google Scholar 

  • Burton, M., Small, S., & Blumstein, S. (2000). The role of segmentation in phonological processing: An fMRI investigation. Journal of Cognitive Neuroscience, 12(4), 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Bushara, K., Weeks, R., Ishii, K., Catalan, M., Tian, B., Rauschecker, J., et al. (1999). Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Natural Neuroscience, 2(8), 759–766.

    Article  CAS  Google Scholar 

  • Deike, S., Gaschler-Markefski, B., Brechmann, A., & Scheich, H. (2004). Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15(9), 1511–1515.

    Article  PubMed  Google Scholar 

  • Dehaene-Lambertz, G. (2000). Cerebral specialization for speech and non-speech stimuli in infants. Journal of Cognitive Neuroscience, 12(3), 449–460.

    Article  PubMed  CAS  Google Scholar 

  • Fiez, J., Raichle, M., Miezin, F., Petersen, S., Tallal, P., & Katz, W. (1995). PET studies of auditory and phonological processing: Effects of stimulus characteristics and task demands. Journal Cognitive Neuroscience, 7(3), 357–375.

    Article  Google Scholar 

  • Gandour, J., Wong, D., Lowe, M., Dzemidzic, M., Satthamnuwong, N., Tong, Y., et al. (2002). A cross-linguistic FMRI study of spectral and temporal cues underlying phonological processing. Journal of Cognitive Neuroscience, 14(7), 1076–1087.

    Article  PubMed  Google Scholar 

  • Grey, J. (1977). Multidimensional perceptual scaling of musical timbres. Journal of the Acoustical Society America, 61, 1270–1277.

    Article  CAS  Google Scholar 

  • Grey, J. M., & Gordon, J. W. (1978). Perceptual effects of spectral modifications on musical timbres. Journal of the Acoustical Society America, 63, 1493–1500.

    Article  Google Scholar 

  • Halpern, R., Zatorre, R., Bouffard, M., & Johnson, J. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42(9), 1281–92.

    Article  PubMed  Google Scholar 

  • Hartley, T., Trinkler, I., & Burgess, N. (2004). Geometric determinants of human spatial memory. Cognition, 94(1), 39–75.

    PubMed  Google Scholar 

  • Hauser, M., Chomsky, N., & Fitch, T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 1569–1579.

    Article  PubMed  CAS  Google Scholar 

  • Heim, S., Opitz, B., Muller, K., & Friederici, A. D. (2003). Phonological processing during language production: fMRI evidence for a shared production-comprehension network. Brain Research Cognitive Brain Research, 16(2), 285–296.

    Article  PubMed  Google Scholar 

  • Hertrich, I., & Ackermann, H. (1999). A vowel synthesizer based on formant sinusoids modulated by fundamental frequency. Journal of the Acoustical Society of America, 106, 2988–2990.

    Article  Google Scholar 

  • Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. (2003). Processing of dynamic aspects of speech and non-speech stimuli: A whole-head magnetoencephalography study. Brain Research Cognitive. Brain Research, 17(1), 130–139.

    Article  PubMed  Google Scholar 

  • Hsieh, L., Gandour, J., Wong, D., & Hutchins, G. D. (2001). Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience. Brain Language, 76(3), 227–252.

    Article  CAS  Google Scholar 

  • Huang, J., Carr, T., & Cao, Y. (2002). Comparing cortical activations for silent and overt speech using event-related fMRI. Human Brain Mapping, 15(1), 39–53.

    Article  PubMed  Google Scholar 

  • Iacoboni, M., Molnar-Szakacs, I., Gallese. V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3(3), 79.

    Article  CAS  Google Scholar 

  • Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–2528.

    Article  PubMed  CAS  Google Scholar 

  • Jäncke, L., Wüstenberg, T., Scheich, H., & Heinze, H. J. (2002). Phonetic perception and the temporal cortex. NeuroImage, 15(4), 733–746.

    Article  PubMed  Google Scholar 

  • Jansen, A., Floel, A., Van Randenborgh, J., Konrad, C., Rotte, M., Forster, A., et al. (2005). Crossed cerebro-cerebellar language dominance. Human Brain Mapping, 24(3):165–172.

    Article  PubMed  Google Scholar 

  • Joanisse, M., & Gati, J. (2003). Overlapping neural regions for processing rapid temporal cues in speech and nonspeech signals. Neuroimage, 19(1), 64–79.

    PubMed  Google Scholar 

  • Johnsrude, I., Zatorre, R., Milner, B., & Evans, A. (1997). Left hemisphere specialization for the processing of acoustic transients. NeuroReport, 8(7), 1761–1765.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, A., Donishi, T., Okamoto, K., & Tamai, Y. (2004). Efferent connections of “posterodorsal” auditory area in the rat cortex: Implications for auditory spatial processing. Neuroscience, 128(2), 399–419.

    Article  PubMed  CAS  Google Scholar 

  • Koelsch, S., Gunter, T. C., v Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage, 17(2), 956–966.

    Article  PubMed  Google Scholar 

  • Lasota, K., Ulmer, J., Firszt, J., Biswal, B., Daniels, D., & Prost, R. (2003). Intensity-dependent activation of the primary auditory cortex in functional magnetic resonance imaging. Journal of Computer Assisted Tomography, 27(2), 213–218.

    Article  PubMed  Google Scholar 

  • Levitin, D., & Menon, V. (2003). Musical structure is processed in “language” areas of the brain: A possible role for Brodmann Area 47 in temporal coherence. Neuroimage, 20(4), 2142–2152.

    Article  PubMed  Google Scholar 

  • Mathiak, K., Hertrich, I., Grodd, W., & Ackermann, H. (2002). Cerebellum and speech perception: A functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 14(6), 902–912.

    Article  PubMed  Google Scholar 

  • Menon, V., Levitin, D., Smith, B., Lembke, A., Krasnow, B., Glazer, D., et al. (2002). Neural correlates of timbre change in harmonic sounds. NeuroImage, 17(4), 1742–1754.

    Article  PubMed  CAS  Google Scholar 

  • Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., & Zilles, K. (2001). Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system? NeuroImage, 13(4), 684–701.

    Article  PubMed  CAS  Google Scholar 

  • Muller, R. A., Kleinhans, N., & Courchesne, E. (2001). Broca’s area and the discrimination of frequency transitions: A functional MRI study. Brain Language, 76(1), 70–76.

    Article  CAS  Google Scholar 

  • Mustovic, H., Scheffler, K., Di Salle, F., Esposito, F., Neuhoff, J. G., Hennig, J., et al. (2003). Temporal integration of sequential auditory events: Silent period in sound pattern activates human planum temporale. Neuroimage, 20(1), 429–434.

    Article  PubMed  Google Scholar 

  • Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Opitz, B., Rinne, T., Mecklinger, A., von Cramon, D. Y., & Schroger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage, 15, 167–174.

    Article  PubMed  Google Scholar 

  • Petacchi, A., Laird, A., Fox, P., & Bower, J. (2005). Cerebellum and auditory function: An ALE meta-analysis of functional neuroimaging studies. Human Brain Mapping, 25(1), 118–128.

    Article  PubMed  Google Scholar 

  • Platel, H., Price, C., Baron, J. C., Wise, R., Lambert, J., Frackowiak, R. S., et al. (1997). The structural components of music perception. A functional anatomical study. Brain, 120(2), 229–243.

    Article  PubMed  Google Scholar 

  • Price, C., Thierry, G., & Griffiths, T. (2005). Speech-specific auditory processing: Where is it? Trends in Cognitive Science, 9(6), 271–276.

    Article  Google Scholar 

  • Rauschecker, J., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Science of the United States of America, 97(22), 11800–11806.

    Article  CAS  Google Scholar 

  • Reiterer, S., Erb, M., Droll, C., Anders, S., Ethofer, T., Grodd, W., et al. (2005). Impact of task difficulty on lateralization of pitch and duration discrimination. Neuroreport, 16(3), 239–242.

    Article  PubMed  Google Scholar 

  • Samson, S. (2003). Neuropsychological studies of musical timbre. Annals of the New York Acadademy of Science, 999, 144–151.

    Article  PubMed  Google Scholar 

  • Samson, S., & Zatorre, R. (1994). Contribution of the right temporal lobe to musical timbre discrimination. Neuropsychologia, 32(2), 231–240.

    Article  PubMed  CAS  Google Scholar 

  • Scott, S., & Johnsrude, I. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neuroscience, 26(2), 100–107.

    Article  CAS  Google Scholar 

  • Shestakova, A., Brattico, E., Huotilainen, M., Galunov, V., Soloviev, A., Sams, M., et al. (2002). Abstract phoneme representations in the left temporal cortex: Magnetic mismatch negativity study. Neuroreport, 13(14), 1813–1816.

    Article  PubMed  Google Scholar 

  • Thaut, M. H. (2003). Neural basis of rhythmic timing networks in the human brain. Annals of the New York Academy of Sciences, 999, 364–373.

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., & Delcroix, N. (2002). Automated anatomical labelling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single subject brain. Neuroimage, 15, 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Vihla, M., & Salmelin, R. (2003). Hemispheric balance in processing attended and non-attended vowels and complex tones. Brain Research Cognitive Brain Research, 16(2), 167–173.

    Article  PubMed  Google Scholar 

  • Warren, J., Jennings, A., & Griffiths, T. (2005). Analysis of the spectral envelope of sounds by the human brain. NeuroImage, 24, 1052–1057.

    Article  PubMed  CAS  Google Scholar 

  • Warren, J., Zielinski, B., Green, G., Rauschecker, J., & Griffiths, T. (2002). Perception of sound-source motion by the human brain. Neuron, 34(1), 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702.

    Article  PubMed  CAS  Google Scholar 

  • Zatorre, R., Belin, P., & Penhune, V. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Science, 6, 37–46.

    Article  Google Scholar 

Download references

Acknowledgements

We thank I.Hertrich for valuable assistance in the generation process of the stimulus material, S. Anders and T. Ethofer for important discussions and comments as well as H.J.Mast for helpful assistance in data acquisition and recruitment of volunteers. This work was supported by the JUNG Stiftung for Wissenschaft und Forschung, Hamburg, Germany and the German Research Fundation (DFG WI 2101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Reiterer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiterer, S., Erb, M., Grodd, W. et al. Cerebral Processing of Timbre and Loudness: fMRI Evidence for a Contribution of Broca’s Area to Basic Auditory Discrimination. Brain Imaging and Behavior 2, 1–10 (2008). https://doi.org/10.1007/s11682-007-9010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-007-9010-3

Keywords

Navigation