Skip to main content

Advertisement

Log in

Cardiovascular effects of nerve growth factor: An analytical review. Part II

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The features of NGF’s influence on the functional activity of the cardiovascular system and the signaling pathways by which activated NGF TrkA and p75ntr receptors regulate the functional state of endothelial and vascular smooth muscle cells and cardiomyocytes are discussed. In addition, the theoretical prospects of agonists and antagonists of TrkA and p75ntr receptors for the treatment of heart and vascular disorders are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zettler, C. and Rush, R.A., Elevated Concentrations of Nerve Growth Factor in Heart and Mesenteric Arteries of Spontaneously Hypertensive Rats, Brain Res., 1993, vol. 614, nos. 1–2, p. 15.

    Article  PubMed  CAS  Google Scholar 

  2. Lockhart, S.T., Turrigiano, G.G., and Birren, S.J., Nerve Growth Factor Modulates Synaptic Transmission between Sympathetic Neurons and Cardiac Myocytes, J. Neurosci., 1997, vol.17, no. 24, p. 9573.

    PubMed  CAS  Google Scholar 

  3. Schmid, H., Forman, L.A., Cao, X., et al., Heterogeneous Cardiac Sympathetic Denervation and Decreased Myocardial Nerve Growth Factor in Streptozotocin-Induced Diabetic Rats: Implications for Cardiac Sympathetic Dysinnervation Complicating Diabetes, Diabetes, 1999, vol. 48, no. 3, p. 603.

    Article  PubMed  CAS  Google Scholar 

  4. Hitunen, J.O., Laurikainen, A., Väkevä, A. et al., Nerve Growth Factor and Brain-Derived Neutrophic Factor MRNAs Are Regulated in Distinct Cell Populations of Rat Heart after Ischemia and Reperfusion, J. Pathol., 2001, vol. 194, no. 2, p. 247.

    Article  Google Scholar 

  5. Creedon, D. and Tuttle, J.B., Nerve Growth Factor Synthesis in Vascular Smooth Muscle, Hypertension, 1991, vol. 18, p. 730.

    PubMed  CAS  Google Scholar 

  6. Donovan, M.J., Miranda, R.C., Kraemer, R., et al., Neurotrophin and Neurotrophin Receptors in Vascular Smooth Muscle Cells. Regulation of Expression in Response to Injury, Am. J. Pathol., 1995, vol. 147, p. 309.

    PubMed  CAS  Google Scholar 

  7. Kraemer, R., Nguyen, H., March, K.L., and Hempstead, B., NGF Activates Similar Intracellular Signaling Pathways in Vascular Smooth Muscle Cells as PDGF-BB But Elicits Different Biological Responses, Arterioscler. Thromb. Vasc. Biol., 1999, vol. 19, p. 1041.

    PubMed  CAS  Google Scholar 

  8. Martinelli, P.M., Camargos, E.R., Azevedo, A.A., et al., Cardiac NGF and GDNF Expression during Trypanosoma Cruzi Infection in Rats, Auton. Neurosci., 2006, vol. 130, no. 1–2, p. 32.

    Article  PubMed  CAS  Google Scholar 

  9. Meloni, M., Caporali, A., Graiani, G., et al., Nerve Growth Factor Promotes Cardiac Repair Following Myocardial Infarction, Circ. Res., 2010, vol. 106, no. 7, p. 1275.

    Article  PubMed  CAS  Google Scholar 

  10. Khan, K.M., Falcone, D.J., and Kraemer, R., Nerve Growth Factor Activation of Erk-1 and Erk-2 Induces Matrix Metalloproteinase-9 Expression in Vascular Smooth Muscle Cells, J. Biochem., 2002, vol. 277, no. 3, p. 2353.

    CAS  Google Scholar 

  11. Kishibe, K., Yamada, Y., and Ogawa, K., Production of Nerve Growth Factor by Mouse Hepatocellular Carcinoma Cells and Expression of TrkA in Tumor-Associated Arteries in Mice, Gastroenterology, 2002, vol. 122, no. 7, p. 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka, A., Wakita, U., Kambe, N., et al., An Autocrine Function of Nerve Growth Factor for Cell Cycle Regulation of Vascular Endothelial Cells, Biochem. Biophys. Res. Com., 2004, vol. 313, no. 4, p. 1009.

    PubMed  CAS  Google Scholar 

  13. Rahbek, U.L., Dissing, S., Thomassen, C., et al., Nerve Growth Factor Activates Aorta Endothelial Cells Causing PI3K/Akt- and ERK-Dependent Migration, Pflugers Arch, 2005, vol. 450, no. 5, p. 355.

    Article  PubMed  CAS  Google Scholar 

  14. Park, M.-J., Kwak, H.-J., Lee, H.-Ch., et al., Nerve Growth Factor Induces Endothelial Cell Invasion and Cord Formation by Promoting Matrix Metalloproteinase-2 Expression Through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway and AP-2 Transcription Factor, J. Biol. Chem., 2007, vol. 282, no. 42, p. 30485.

    Article  PubMed  CAS  Google Scholar 

  15. Han, Y., Kang, J., Li, N., et al., Nerve Growth Factor Promotes Formation of Lumen-Like Structures in Vitro Throught Inducing Apoptosis in Human Umbilical Vein Endothelial Cells, Biochem. Biophys. Res. Com., 2008, vol. 366, no. 3, p. 685.

    Article  PubMed  CAS  Google Scholar 

  16. Ribatti, D., Nico, B., Perra, M.T., Maxia, C., et al., Correlation between NGF/TrkA and Microvascular Density in Human Pterygium, Int. J. Exp. Pathol., 2009, vol. 90, no. 6, p. 615.

    Article  PubMed  CAS  Google Scholar 

  17. Levine, M.H., Yates, K.E., and Kaban, L.B., Nerve Growth Factor Is Expressed in Rat Femoral Vein. J. Oral Maxillofac. Surg., 2002, vol. 60, no. 7, p. 729.

    Article  PubMed  Google Scholar 

  18. Wu, X., Myers, A.C., Goldsone, A.C., et al., Localization of Nerve Growth Factor and Its Receptors in the Human Nasal Mucosa, J. Allergy Clin. Immunol., 2006, vol. 118, no. 2, p. 428.

    Article  PubMed  CAS  Google Scholar 

  19. Caporali, A., Pani, E., Horrevoets, A.J.G., et al., Neurotrophin p75 Receptor (p75NTR) Promotes Endothelial Cell Apoptosis and Inhibits Angiogenesis. Implication for Diabetes-Induced Impaired Neovascularization in Ischemic Limb Muscle, Circ. Res., 2008, vol. 103, p. 15.

    Article  CAS  Google Scholar 

  20. Katzir, I., Shani, J., Goshen, G., et al., Characterization of Nerve Growth Factors (NGFs) from Snake Venoms by Use of a Novel, Quantitative Bioassay Utilizing Pheochromocytoma (PC12) Cells Overexpressing Human TrkA Receptors, Toxicon, 2003, vol. 42, p. 481.

    Article  PubMed  CAS  Google Scholar 

  21. Dolle’, J.-P., Rezvan, A., Allen, F.D., et al., Nerve Growth Factor-Induced Migration of Endothelial Cells, J. Pharmacol. Exp. Therapeutics, 2005, vol. 315, no. 3, p. 1220.

    Article  CAS  Google Scholar 

  22. Scnaper, H.W., Grant, D.S., Stetler-Stevenson, W.G., et al., Type IV Collagenase(s) and TIMPs Modulate Endothelial Cell Morphogenesis in vitro, J. Cell. Physiol., 1993, vol. 56, no. 2, p. 235.

    Article  Google Scholar 

  23. Nguyen, M., Arkell, J., and Jackson, C.J., Human Endothelial Gelatinases and Angiogenesis, Int. J. Biol. Cell. Biol., 2001, vol. 33, p. 960.

    Article  CAS  Google Scholar 

  24. Cornelius, L.A., Nehring, L.C., Roby, J.D., et al., Human Dermal Microvascular Endothelial Cells Produce Matrix Metalloproteinases in Response to Angiogenic Factors and Migration, J. Investig. Dermatol., 1995, vol. 105, no. 2, p. 170.

    Article  PubMed  CAS  Google Scholar 

  25. Julio-Pieper, M., Lozada, P., Tapia, V., et al., Nerve Growth Factor Induces Vascular Endothelial Growth Factor Expression in Granulose Cells Via a TrkA Receptor/Mitogen-Activated Protein Kinase-Extracellularly Regulated Kinase 2-Dependent Pathway, J. Clin. Endocrinol. Metab., 2009, vol. 94, no. 8, p. 3065.

    Article  PubMed  CAS  Google Scholar 

  26. Finkel, T., Reactive Oxygen Species and Signal Transduction, IUBMB Life, 2001, vol. 52, nos. 1–2, p. 3.

    Article  PubMed  CAS  Google Scholar 

  27. Lin, M.I. and Sessa, W.C., Vascular Endothelial Growth Factor Signaling to Endothelial Nitric Oxide Synthase. More Than a FLeeTing Moment, Circ. Res., 2006, vol. 99, no. 7, p. 666.

    Article  PubMed  CAS  Google Scholar 

  28. Graiani, G., Emanueli, C., Desortes, E., et al., Nerve Growth Factor Promotes Reparative Angiogenesis and Inhibits Endothelial Apoptosis in Cutaneous Wounds of Type 1 Diabetic Mice, Diabetologia, 2004, vol. 47, no. 6, p. 1047.

    PubMed  CAS  Google Scholar 

  29. Hansen-Algenstaedt, N., Algenstaedt, P., Schaefer, C., et al., Neural Driven Angiogenesis by Overexpression of Nerve Growth Factor, Histochem. Cell. Biol., 2006, vol. 125, no. 6, p. 637.

    Article  PubMed  CAS  Google Scholar 

  30. Lazarovici, P., Gazit, A., Stanizewska, I., et al., Nerve Growth Factor (NGF) Promotes Angiogenesis in the Quail Chorioallantoic Membrane, Endothelium, 2006, vol. 13, no. 1, p. 51.

    Article  PubMed  CAS  Google Scholar 

  31. Mandriota, S.J., Seghezzi, G., Vassalli, J.D., et al., Vascular Endothelial Growth Factor Increases Urokinase Receptor Expression in Vascular Endothelial Cells, J. Biol. Chem., 1995, vol. 270, no. 17, p. 9709.

    PubMed  CAS  Google Scholar 

  32. Pepper, M.S., Vassalli, J.D., Wiks, J.W., et al., Modulation of Bovine Microvascular Endothelial Cell Proteolytic Properties by Inhibitors of Angiogenesis, J. Cell. Biochem., 1994, vol. 55, no. 4, p. 419.

    Article  PubMed  CAS  Google Scholar 

  33. Okada, S.S., Grobmyer, S.R., and Barmathan, E.S., Contrasting Effects of Plasminogen Activators, Urokinase Receptor, and LDL Receptor-Related Protein on Smooth Muscle Cell Migration and Invasion, Arterioscler. Thromb. Vasc. Biol., 1996, vol. 16, no. 10, p. 1269.

    PubMed  CAS  Google Scholar 

  34. Yu, J., Bian, D., Mahanivong, C., et al., P38 Mitogen-Activated Protein Kinase Regulation of Endothelial Cell Migration Depends on Urokinase Plasminogen Activator Expression, J. Biol. Chem., 2004, vol. 279, no. 48, p. 50446.

    Article  PubMed  CAS  Google Scholar 

  35. Okada, S.S., Tomaszewski, J.E., and Bamathan, E.S., Migrating Vascular Smooth Muscle Cells Polarize Cell Surface Urokinase Receptors after Injury in vitro, Exp. Cell. Res., 1995, vol. 217, no. 1, p. 180.

    Article  PubMed  CAS  Google Scholar 

  36. Kanse, S.M., Benzakour, O., and Kanthou, Ch., et al. Induction of Vascular SMC Proliferation by Urokinase Indicates a Novel Mechanism of Action in Vasoproliferative Disorders, Arterioscler. Thromb. Vasc. Biol., 1997, vol. 17, p. 2848.

    PubMed  CAS  Google Scholar 

  37. Jo, M., Thomas, K.S., Somlyo, A.V., et al., Cooperativity between the Ras-ERK and Rho-Rho Kinase Pathways in Urokinase-Type Plasminogen Activator-Stimulated Cell Migration, J. Biol. Chem., 2002, vol. 277, no. 14, p. 12479.

    Article  PubMed  CAS  Google Scholar 

  38. Papapetropoulos, A., Garcia-Cardena, G., Madri, J.A., et al., Nitric Oxide Production Contributes to the Angiogenic Properties of Vascular Endothelial Growth Factor in Human Endothelial Cells, J. Clin. Invest., 1997, vol. 100, p. 3131.

    Article  PubMed  CAS  Google Scholar 

  39. Fukumara, D., Gohongi, T., Kadambi, A., et al., Predomonant Role of Endothelial Nitric Oxide Synthase in Vascular Endothelial Growth Factor-Induced Angiogenesis and Vascular Permeability, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, p. 2604.

    Article  Google Scholar 

  40. Proskuryakova, S.Ya., Konoplyannikova, A.G., Ivannikova, A.I., and Skvortsov, V.G., Biochemistry of Nitrogen Oxide, Uspekhi Sovr. Biokh., 1999, vol. 119, no. 4, p. 380.

    Google Scholar 

  41. Frank, P.G., Woodman, S.E., Pak, D.S., et al., Cavelin, Caveolae and Endothelium Cell Function, Arterioscler. Tromb. Vasc. Biol., 2003, vol. 23, p. 1161.

    Article  CAS  Google Scholar 

  42. Michel, T. and Ferron, O., Nitric Oxide Synthases: Which, Where, How and Why, J. Clin. Invest., 1997, vol. 100, p. 2146.

    Article  PubMed  CAS  Google Scholar 

  43. Rask-Madsen, C. and King, G.L., Differential Regulation of VEGF Signaling by PKC-Alpha and PKC-Epsilon in Endothelial Cells, Arterioscler. Thromb. Vasc. Biol., 2008, vol. 28, no. 5, p. 919.

    Article  PubMed  CAS  Google Scholar 

  44. Chung B.H., Cho Y.L., Kim J.D., et al., Protion of Direct Angiogenesis in vitro and in vivo by Puerariae Flos Extract via Activation of MEK/ERK-, Pi3K/Akt/eNOS-, and Src/FAK-dependent pathways, Phytother. Res., 2009, vol. 34, no. 6, p. 934.

    Google Scholar 

  45. Grummer, M.A., Sullivan, J.A., Magness, R.R., and Bird, I.M., Vascular Endothelial Growth Factor Acts Through Novel, Pregnancy-Enhanced Receptor Signaling Pathways to Stimulate Endothelial Nitric Oxide Synthase Activity in Uterine Artery Endothelial Cells, Biochem. J., 2009, vol. 417, no. 2, p. 501.

    Article  PubMed  CAS  Google Scholar 

  46. Li, Z., Zhang, G., Feil, R., et al., Sequential Activation of P38 and ERK Pathways by cGMP-Dependent Protein Kinase Leading to Activation of the Platelet Integrin AlphaIIb Beta3, Blood, 2006, vol. 107, no. 3, p. 965.

    PubMed  CAS  Google Scholar 

  47. Lecht, S., Arien-Zakay, H., Marcinkiewicz, C., et al., Nerve Growth Factor-Induced Protection of Brain Capillary Endothelial Cells Exposed to Oxygen-Glucose Deprivation Involves Attenuation of Erk Phosphorylation, J. Mol. Neurosci., 2010, vol. 41, no. 1, p. 183.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, S.J., Namkoong, S., Kim, C.K., et al., Fractalkine Stimulates Angiogenesis by Activating the Raf1/MEK/ERK- and PI3K/Akt/eNOS-Dependent Signal Pathways, Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 291, no. 6, p. H2836.

    Article  PubMed  CAS  Google Scholar 

  49. Yon, J.-Y., Wang, T., and Cai, H., An Ezrin/Calpain/PI3K/AMPK/eNOSs1179 Signaling Cascade Mediating VEGF-Dependent Endothelial Nitric Oxide Production. Circ. Res., 2009, vol. 104, no. 1, p. 50.

    Google Scholar 

  50. Namiecin’ska, M., Marciniak, K., and Nowak, J.Z., VEGF As An Angiogenic, Neutrophic, and Neuroprotective Factor, Postepy Hig. Dosw. (Online), 2005, vol. 59, p. 573.

    Google Scholar 

  51. Zhang, Y., Hu, G., Lin, H.C., et al., Radix Astragali Extract Promotes Angiogenesis Involving Vascular Endothelial Growth Factor Receptor-Related Phosphatidylinositol 3-Kinase/Akt-Dependent Pathway in Human Endothelial Cells, Phytother. Res., 2009, vol. 23, no. 9, p. 1205.

    Article  PubMed  CAS  Google Scholar 

  52. Chen, Z.P., Mitchelhill, K.I., Michell, B.J., et al., AMP-Activated Protein Kinase Phosphorylation of Endothelial NO Synthase, FEBS Lett., 1999, vol. 443, p. 285.

    Article  PubMed  CAS  Google Scholar 

  53. Levine, Y.C., Li, G.K., and Michel, T., Agonist-Modulated Regulation of AMP-Activated Protein Kinase (AMPK) in Endothelial Cells. Evidence for An AMPK- > Rac1- > Akt- > Endothelial Nitric-Oxide Synthase Pathway, J. Biol. Chem., 2007, vol. 282, p. 20351.

    Article  PubMed  CAS  Google Scholar 

  54. Ge’linas, D.S., Bernatchez, P.N., Rollin, S., et al., Immediate and Delayed VEGF-Mediated NO Synthesis in Endothelial Cells: Role of PI3K, PKC and PLC Pathways, Br. J. Pharmacol., 2002, vol. 137, no. 7, p. 1021.

    Article  CAS  Google Scholar 

  55. Cattaneo, M.G., Chini, B., and Vicentini, L.M., Oxytocin Stimulates Migration and Invasion in Human Endothelial Cells, Br. J. Pharmacol., 2008, vol. 153, no. 4, p. 728.

    Article  PubMed  CAS  Google Scholar 

  56. Caporali, A. and Emanueli, C., Cardiovascular Actions of Neurotrophins, Physiol. Revol., 2009, vol. 80, p. 279.

    Article  CAS  Google Scholar 

  57. Ricci, A., Filici, L., Mariotta, S., et al., Neurotrophin and Neurotrophin Receptor Protein Expression in the Human Lung, Am. J. Respiratory Cell Mol. Biol., 2004, vol. 30, p. 12.

    Article  CAS  Google Scholar 

  58. Lucchesi P.A., Belmandani S., Matrougui K., Involvement of Metalloproteinase 2/9 in Epidermal Growth Factor Receptor Transactivation in Pressure-Induced Myogenic Tone in Mouse Mesenteric Resistance Arteries, Circulatuion, 2004, vol. 110, p. 3587.

    Article  CAS  Google Scholar 

  59. Wang, S., Bray, P., McCaffrey, T., et al., p75NTR Mediates Neurotrophin-Induced Apoptosis of Vascular Smooth Muscle Cells, Am. J. Pathol., 2000, vol. 157, no. 4, p. 104.

    Google Scholar 

  60. Cantarella, G., Lempereur, L., Presta, M., et al., Nerve Growth Factor-Endothelial Cell Interaction Leads To Angiogenesis in vitro and in vivo, FASEB, 2002, vol. 16, no. 10, p. 1307.

    CAS  Google Scholar 

  61. Nico, B., Mangieri, D., Benagiano, V., et al., Nerve Growth Factor As Angogenic Factor, Microvasc. Res., 2008, vol. 75, no. 2, p. 135.

    Article  PubMed  CAS  Google Scholar 

  62. Sakata, N., Chan, N.K., Chrisler, J., et al., Bone Marrow Cells Produce Nerve Growth Factor and Promote Angiogenesis Around Transplanted Islets, World J. Gastroenterol., 2010, vol. 16, no. 10, p. 1215.

    Article  PubMed  Google Scholar 

  63. Lecht, S., Avien-Zakay, H., Kohan, M., et al., Angiostatic Effects of K252a, a Trik Inhibitor, in Murine Brain Capillary Endothelial Cells, Mol. Cell. Biochem., 2010, vol. 53, p. 107.

    CAS  Google Scholar 

  64. Raychaudhuri, S.K., Raychaudhuri, S.P., Weltman, H., and Farber, E.M., Effect of Nerve Growth Factor on Endothelial Cell Biology: Proliferation and Adherence Molecule Expression on Human Dermal Microvascular Endothelial Cells, Arch. Dermatol. Res., 2001, vol. 293, no. 6, p. 291.

    Article  PubMed  CAS  Google Scholar 

  65. Emanueli, C., Salis, M., Pinna, A., et al., Nerve Growth Factor Promotes Angiogenesis and Arteriogenesis in Ischemic Hinlimbs, Circulat., 2002, vol. 106, p. 2257.

    Article  CAS  Google Scholar 

  66. Salis, M.B., Graiani, G., Desortes, E., et al., Nerve Growth Factor Supplementation Reverses the Impairment, Induced by Type 1 Diabetes, of Hindlimb Post-Ischemic Recovery in Mice, Diabetologia, 2004, vol. 47, no. 6, p. 1055.

    PubMed  CAS  Google Scholar 

  67. Liu, X., Wang, D., Liu, Y., et al., Neuronal Driven Angiogenesis: The Role of NGF in Retinal Neovascularization in an Oxygen-Induced Retinopathy Model, Invest. Ophthalmol. Vis. Sci., 2010, vol. 51, no. 7, p. 3749.

    Article  PubMed  Google Scholar 

  68. Bonini, S., Lambiase, A., Rama, P., et al., Topical Treatment with Nerve Growth Factor Fjr Neutrophic Keratitis, Ophthalmology, 2000, vol. 107, no. 7, p. 1347.

    Article  PubMed  CAS  Google Scholar 

  69. Tuveri, M.A., Generini, S., Matucci-Cerinic, M., and Aloe, L., NGF, a Useful Tool in the Treatment of Chronic Vasculitic Ulcers in Rheumatoid Arthritis, Lancet, 2000, vol. 356, no. 9243, p. 1739.

    Article  PubMed  CAS  Google Scholar 

  70. Lambiase, A., Manni, L., Rama, P., and Bonini, S., Clinical Application of Nerve Growth Factor on Human Facor Corneal Ulcer, Arch. Ital. Biol., 2003, vol. 141, nos. 2–3, p. 141.

    PubMed  CAS  Google Scholar 

  71. Tuveri, M.A., Triaca, V., and Aloe, L., The Nerve Growth Factor Induces Cutaneous Ulcer Healing in “Non-Responder” Tranplated Skin, Ann. Ist. Sanita, 2006, vol. 42, no. 1, p. 94.

    CAS  Google Scholar 

  72. Aloe, L., Nerve Growth Factor, Human Skin Ulcers and Vascularization. Our Experience, Prog. Brain Res., 2004, vol. 146, p. 515.

    Article  PubMed  CAS  Google Scholar 

  73. Chiaretti, A., Piastra, M., Caresta, E., et al., Improving Ischemic Skin Revascularization by Nerve Growth Factor in a Child with Crush Syndrome, Arch. Dis. Child., 2002, vol. 87, p. 446.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, M.L., Prawira, A., Kaye, A.H., et al., Tumor Angiogenesis: Its Mechanism and Therapeutic Implications in Malignant Gliomas. J. Clin. Neurosci. 2009. vol. 16, 9, P, p. 1119.

    Article  CAS  Google Scholar 

  75. Kraemer, R., Reduced Apoptosis and Increased Lesion Development in the Flow-Restricted Carotid Artery of p75NTR-Null Mutant Mice, Circ. Res., 2002, vol. 91, p. 494.

    Article  PubMed  CAS  Google Scholar 

  76. Xu, M., Remillard, C.V., Sachs, B.J., et al., p75 Neurotrophin Receptor Regulates Agonist-Induced Pulmonary Vasoconstriction, Am. J. Physiol. Heart Circ. Physiol., 2008, vol. 295, p. 1529.

    Article  CAS  Google Scholar 

  77. Nakagawara, A., Trk Receptor Tyrosine Kinase: a Bridge between Cancer and Neural Development, Cancer Lett., 2001, vol. 169, no. 2, p. 107.

    Article  PubMed  CAS  Google Scholar 

  78. Burger, R.A., Role of Vascular Endothelial Growth Factor Inhibitors in the Treatment of Gynecologic Malignancies. J. Ginecol. Oncol. 2010. vol. 21, no. 1, p. 3.

    Article  Google Scholar 

  79. Pinto, M.P., Badtke, M.M., Dudevoir, M.L., et al., Vascular Endothelial Growth Factor Secreted by Activated Stroma Enhances Angiogenesis and Hormone-Independent Growth Os Estrogen Receptor-Positive Breast Cancer, Cancer Res., 2010, vol. 70, no. 7, p. 2655.

    Article  PubMed  CAS  Google Scholar 

  80. Heidenreich, R., Röcken, M., and Ghoreschi, K., Angiogenesis Drives Psoriasis Pathogenesis, Int. Exp. Pathol., 2009, vol. 90, no. 3, p. 232.

    Article  CAS  Google Scholar 

  81. Raychaudhuri, S.P., Jiang, W.-Y., and Raychaudhuri, S.K., Revisiting the Koebner Phenomen. Role of NGF and Its Receptor System in the Pathogenesis of Psoriasis, Am. J. Pathology, 2008, vol. 172, no. 4, p. 961.

    Article  CAS  Google Scholar 

  82. Raychaudhuri, S.P., Sanyal, M., Weltman, H., and Kundu-Raychaudhuri, S., K252a, a High-Affinity Nerve Growth Factor Receptor Blocker, Improves Psoriasia: An in vivo Study Using the Severe Combined Immunodeficient Mouse-Human Skin Model, J. Invest. Dermatol., 2004, vol. 122, p. 812.

    Article  PubMed  CAS  Google Scholar 

  83. Ebendal, T., Belew, M., Jacobson, C.O., and Porath, J., Neurite Outgrowth Elicited by Embryonic Chick Heart: Partial Purification of the Active Factor, Neurosci. Lett., 1979, vol. 14, no. 1, p. 91.

    Article  PubMed  CAS  Google Scholar 

  84. Banerjee, S.P., Snyder, S.H., Guatrecasa, P., and Greene, L.A., Binding of Nerve Growth Factor Receptor in Sympathetic Ganglia, Proc. Nat. Acad. Sci., 1973, vol. 70, no. 9, p. 2519.

    Article  PubMed  CAS  Google Scholar 

  85. Caporali, A., Sala-Newby, G.B., Meloni, M., et al., Identification of the Prosurvival Activity of Nerve Growth Factor on Cardiac Myocytes, Cell. Deah Differ., 2008, vol. 15, no. 2, p. 299.

    Article  CAS  Google Scholar 

  86. Wijchers, P.J., Burbach, J.P., and Smidt, M.P., In Control of Biology: of Mice, Men and Foxes, Biochem. J., 2006, vol. 397, p. 233.

    Article  PubMed  CAS  Google Scholar 

  87. Maiese, K., Chong, Z.Z., and Shang, Y.C., “Sly As FOXO”: New Paths with Forkhead Signaling in the Brain, Curr. Neurovasc, Res., 2007, vol. 4, p. 295.

    Article  CAS  Google Scholar 

  88. Barthelemy, C., Henderson, C.E., and Pettmann, B., Foxo3a Induces Motoneuron Death Through the Fas Pathway in Cooperation with JNK, BMC Neurosci., 2004, vol. 5, p. 48.

    Article  PubMed  CAS  Google Scholar 

  89. Tothova, Z., Kollipara, R., Huntly, B.J., et al., FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative Stress, Cell, 2007, vol. 128, p. 325.

    Article  PubMed  CAS  Google Scholar 

  90. Obexer, P., Geiger, K., Amros, P.F., et al., FKHRL1-Mediated Expression of NOXA and Bim Induces Apoptosis Via the Mitochondria in Neuroblastoma Cells, Cell. Death Diffe., 2007, vol. 14, p. 534.

    Article  CAS  Google Scholar 

  91. Evans-Anderson, H.J., Alfieri, C.M., and Yutsey, K.E., Regulation of Cardiomyocyte Proliferation and Myocardial Growth During Development by FOXO Transcription Factors, Circ. Res., 2008, vol. 102, p. 686.

    Article  PubMed  CAS  Google Scholar 

  92. Li, H.H., Willis, M.S., Lockyer, P., et al., Atrogin-1 Inhibits Akt-Dependent Cardiac Hypertrophy in Mice Via Ubiquitin-Dependent Coactivation of Forkhead Proteins, J. Clin. Invest., 2007, vol. 117, p. 3211.

    Article  PubMed  CAS  Google Scholar 

  93. Hannenhalli, S., Putt, M.E., Gilmore, J.M., et al., Transcription Genomics Associates FOX Transcription Factors with Human Heart Failure, Circulation, 2006, vol. 114, p. 1269.

    Article  PubMed  CAS  Google Scholar 

  94. Shao, Z., Bhattacharya, K., Hsich, E., et al., C-Jun N-Terminal Kinases Mediate Reactivation of Akt and Cardiomyocyte Survival After Hypoxic Injury in vitro and in vivo, Circ. Res., 2006, vol. 98, p. 111.

    Article  PubMed  CAS  Google Scholar 

  95. Wei, H. and Vander, Heide R.S., Ischemic Preconditioning and Heat Shock Activate Akt Via a Focal Adhesion Kinase-Mediated Pathway in Langendorff-Perfused Adult Rat Hearts, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 298, no. 1, p. H152.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang, Y., Ge, W., and Ren, J., Gene Expression and Cardiovascular Function — Akt Plays An Important Role An Important Role in Lipopolysaccharide-Induced Myocardial Injury and Protection, FASEB, 2010, vol. 24, p. 1036.

    CAS  Google Scholar 

  97. Milano, G., von Segesser, L.K., Morel, S., et al., Phosphorylation of Phosphatidylinositol-3-Kinase-Protein Kinase B and Extracellular Signal-Regulated Kinases 1/2 Mediate Reoxygenation-Induced Cardioprotection during Hypoxia, Exp. Biol. Med., 2010, vol. 235, p. 401.

    Article  CAS  Google Scholar 

  98. Siragusa, M., Katare, R., Meloni, M., et al., Involvement of Phosphoinositide 3-Kinase γ in Angiogenesis and Healing of Experimental Myocardial Infarction in Mice, Circulation Res., 2010, vol. 106, p. 757.

    Article  PubMed  CAS  Google Scholar 

  99. Clerk, A., Aggeli, I.K., Stathopoulou, K., and Sugden, P.H., Peptide Growth Factors Signal Differentially Through Protein Kinase C to Extracellular Signal-Regulated Kinases in Neonatal Cardiomyocytes, Cell. Signal, 2006, vol. 18, no. 2, p. 225.

    Article  PubMed  CAS  Google Scholar 

  100. Rana, O.R., Saygili, E., Meyer, C., et al., Regulation of Nerve Growth Factor in the Heart: the Role of the Calcineurin-NFAT Pathway, J. Mol. Cell. Cardiol., 2009, vol. 46, no. 4, p. 568.

    Article  PubMed  CAS  Google Scholar 

  101. Panther, F., Williams, T., and Ritter, O., Inhibition of the Calcineurin-NFAT Signaling Cascade in the Treatment of Heart Failure, Recent Pat. Cardiovasc. Drug Discovol., 2009, vol. 4, no. 3, p. 180.

    Article  CAS  Google Scholar 

  102. Wu, X., Eder, P., Chang, B., and Molkentin, J.D., TRPC Channels Are Necessary Mediators of Pathologic Cardiac Hypertrophy. Proc. Natl. Acad. Sci. USA. 2010. vol. 107, no. 15, p. 7000.

    Article  PubMed  CAS  Google Scholar 

  103. Andrade-Rozental, A.F., Rozental, R., Hassankhani, A., et al., Characterization of Two Populations of Ectopic Cells Isolated from the Hearts of NGF Transgenic Mice. Devol. Biol. 1995. vol. 169, 2, p. 533.

    Article  CAS  Google Scholar 

  104. Kaye, D.M., Vaddadi, G., Gruskin, S.L., et al., Reduced Myocardial Nerve Growth Factor Expression in Human and Experimental Heart Failure, Circ. Res., 2000, vol. 86, p. e80.

    PubMed  CAS  Google Scholar 

  105. Verbout, N.G., Jacoby, D.B., Gleich, G.J., and Fryer, A.D., Atropine-Enhanced, Antigen Challenge-Induced Airway Hyperreactivity in Guinea Pigs Is Mediated by Eosinophils and Nerve Growth Factor, Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, vol. 297, no. 2, p. L228.

    Article  PubMed  CAS  Google Scholar 

  106. Gong, Y.T., Li, W.M., Yang, S.S., et al., Probucol Attenuates Atrial Autonomic Remodeling in a Canine Model of Atrial Fibrillation Produced by Prolonged Atrial Pacing, Chin. Med. J. (Engl.), 2009, vol. 122, no. 1, p. 74.

    CAS  Google Scholar 

  107. Saygili E., Schauerte P., Küppers F., et al. Electrical Stimulation of Sympathetic Neurons Induces Autocrine/Paracrine Effects of Ngf Mediated by TrkA // J. Mol. Cell. Cardiol., 2010. vol. 49, no. 1, p. 79.

    Article  PubMed  CAS  Google Scholar 

  108. Singh, M., Roginskaya, M., Dalal, S., et al., Extracellular Ubiquitin Inhibits β-AR-Stimulated Apoptosis in Cardiac Myocytes: Role of GSK-3β and Mitochondrial Pathways, Cardiovasc. Res., 2010, vol. 86, no. 1, p. 20.

    PubMed  CAS  Google Scholar 

  109. Furukawa, Y., Fukukawa, S., and Satoyoshi, E., Nerve Growth Factor Secreted by Mouse Heart Cells in Culture, J. Biol. Chem., 1984, vol. 259, no. 2, p. 1259.

    PubMed  CAS  Google Scholar 

  110. Hassankhani, A., Steinhelper, M.E., Soonpaa, M.H., et al., Overexpression of NGF within the Heart of Transgenic Mice Causes Hyperinnervation, Cardiac Enlargement, and Hyperplasia of Ectopic Cells, Devol. Biol., 1995, vol. 169, no. 1, p. 309.

    Article  CAS  Google Scholar 

  111. Heath, B.M., Xia, J., Dong, E., et al., Overexpression of Nerve Growth Factor in the Heart Alters Ion Channel Activity and β-Adrenergic Signaling in An Adult Transgenic Mouse, J. Physiol., 1998, vol. 512, no. 3, p. 779.

    Article  PubMed  CAS  Google Scholar 

  112. Kiriazis, H., Du, X.-J., Feng, X., et al., Preserved Left Ventricular Structure and Function in Mice with Cardiac Sympathetic Hyperinnervation, Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 289, p. H1359.

    Article  PubMed  CAS  Google Scholar 

  113. Qu, X.F., Yu, Y., Liu, L., et al., The Tone of Sympathetic and Expression of Beta1 Receptor in the Dogs with Sustained Atrial Fibrillation, Zhonghua Yi Xue Za Zhi, 2007, vol. 87, no. 28, p. 2000.

    PubMed  CAS  Google Scholar 

  114. Zhou, S., Paz, O., Cao, J.M., et al., Differential Beta-Adrenoceptor Expression Induced by Nerve Growth Factor Infusion Into the Canine Right and Left Stellate Ganglia, Heart Rhythm, 2005, vol. 2, no. 12, p. 1347.

    Article  PubMed  Google Scholar 

  115. Morimoto, A., Hasegawa, H., Cheng, H.-J., et al., Endogenous B3-Adrenoreceptor Activation Contributes to Left Ventricular and Cardiomyocyte Dysfunction in Heart Failure, Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 280, p. H2425.

    Article  Google Scholar 

  116. Menon, B., Singh, M., Ross, R.S., et al., β-Adrenergic Receptor-Stimulatedapoptosis in Adult Cardiac Myocytes Involves MMP-2-Mediated Disruption of β1 Integrin Signaling and Mitochondrial Pathway, Am. J. Physiol. Cell. Physiol., 2006, vol. 290, p. C254.

    Article  PubMed  CAS  Google Scholar 

  117. Krishnamurthy, P., Subramanian, V., Singh, M., and Singh, K., β1 Integrins Modulate β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis and Myocardial Remodeling, Hypertension, 2007, vol. 49, p. 865.

    Article  PubMed  CAS  Google Scholar 

  118. Ren, C., Wang, F., Li, G., et al., Nerve Sprouting Suppresses Myocardial I(To) and I(K1) Channels and Increases to Ventricular Fibrillation in Rat, Auton. Neurosci., 2008, vol. 144, nos. 1–2, p. 22.

    Article  PubMed  CAS  Google Scholar 

  119. Malfatto, G., Rosen, T.S., Steinberg, S.F., et al., Sympathetic Neural Modulation of Cardiac Impulse Initiation and Repolarization in the Newborn Rat, Circ. Res., 1990, vol. 66, p. 427.

    PubMed  CAS  Google Scholar 

  120. Zhou, S., Cao, J.M., Tebb, Z.D., et al., Modulation of QT Interval by Cardiac Sympathetic Nerve Sprouting and the Mechanisms of Ventricular Arrhythmia in a Canine Model of Sudden Cardiac Death, J. Cardiovasc. Electrophysiol., 2001, vol. 12, no. 9, p. 1068.

    Article  PubMed  CAS  Google Scholar 

  121. Swissa, M., Zhou, S., Gonzalez-Gomez, I., et al., Long-Term Subthreshold Electrical Stimulation of the Left Stellate Ganglion and a Canine Model of Sudden Cardiac Death, J. Am. Coll. Cardiol., 2004, vol. 43, no. 5, p. 858.

    Article  PubMed  Google Scholar 

  122. Drapeau, J., El-Helou, vol., Clement, R., et al., Nestin-Expressing Neural Stem Cells Identified in the Scar Following Myocardial Infarction, J. Cell. Physiol., 2005, vol. 204, no. 1, p. 51.

    Article  PubMed  CAS  Google Scholar 

  123. Lujan, H.L., Chen, Y., and Dicarlo, S.E., Paraplegia Increased Cardiac NGF Content, Sympathetic Tonus, and the Susceptibility to Ischemic-Induced Ventricular Tachycardia in Conscious Rats, Am. J. Physiol. Heart Circ. Physiol., 2009, vol. 296, no. 5, p. H1364.

    Article  PubMed  CAS  Google Scholar 

  124. Lorenz C.U., Alston E.N., Belcik J.T., et al., Heterogeneous Ventricular Sympathetic Innervations, Altered β-Adrenergic Receptor Erxpression, and Rhythm Instability in Mice Lacking p75 Neutrophin Receptor, Am. J. Physiol. Heart. Circ. Physiol., 2010, vol. 298, no. 6, p. H1652.

    Article  CAS  Google Scholar 

  125. Ieda, M., Kanazawa, H., Kimura, K., et al., Sema3a Maintains Normal Heart Rhythm Through Sympathetic Innervations Patterning, Nat. Med., 2007, vol. 13, no. 5, p. 604.

    Article  PubMed  CAS  Google Scholar 

  126. Ieda, M., Kimura, K., Kanazawa, H., and Fukuda, K., Regulation of Cardiac Nerves: a New Paradigm in the Management of Sudden Cardiac Death? Curr. Med. Chem., 2008, vol. 15, no. 17, p. 1731.

    Article  PubMed  CAS  Google Scholar 

  127. Hasan, W., Jama, A., Donohue, T., et al., Sympathetic Hyperinnervation and Inflammatory Cell NGF Synthesis Following Myocardial Infarction in Rats, Brain Res., 2006, vol. 1124, no. 1, p. 142.

    Article  PubMed  CAS  Google Scholar 

  128. El-Helou, V., Proulx, C., Gosselin, H., et al., Dexamethasone Treatment of Post-MI Rats Attenuates Sympathetic Innervations of the Infarct Region, J. Appl. Physiol., 2008, vol. 1004, p. 150.

    Google Scholar 

  129. Wermi, G., Hasan, W., Bhattacherjee, A., et al., Macrophage Depletion Suppresses Sympathetic Hyperinnervation Following Myocardial Infarction, Basic. Res. Cardiol., 2009, vol. 104, no. 6, p. 681.

    Google Scholar 

  130. Abe, T., Morgan, D.A., and Gutterman, D.D., Protective Role of Nerve Growth Factor Against Postischemic Dysfunction of Sympathetic Coronary Innervation. Circulation, 1997, vol. 95, p. 213–220.

    PubMed  CAS  Google Scholar 

  131. Qin, F., Vulapalli, R.S., Stevens, S.Y., et al., Loss of Cardiac Sympathetic Neurotransmitters in Heart Failure and NE Infusion Is Associated with Reduced NGF, Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 282, p. H363.

    PubMed  CAS  Google Scholar 

  132. Shyu K.G., Liou J.Y., Wang B.W. et al., Carvedilol Prevents Cardiac Hypertrophy and Overexpression of Hypoxia-Inducible Factor-1alpha and Vascular Endothelial Growth Factor in Pressure-Overloaded Rat Heart, J. Biomed. Sci., 2005, vol. 12, no. 2, p. 409.

    Article  PubMed  CAS  Google Scholar 

  133. Kristen, A. V., Kreusser, M.M., Lehmann, L., et al., Preserved Norepinephrine Reuptake But Reduced Sympathetic Nerve Endings in Hypertrophic Volume-Overloaded Rat Hearts, J. Card. Fail., 2006, vol. 12, no. 7, p. 577.

    Article  PubMed  CAS  Google Scholar 

  134. Kimura K., Kanazawa H., Ieda M. et al. Norepinephrine-Induced Nerve Growth Factor Depletion Causes Cardiac Sympathetic Denervation in Severe Heart Failure, Auton. Neurosci., 2010, vol. 156, p. 27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Kryzhanovskii, M.B. Vititnova, 2011, published in Fiziologiya Cheloveka, 2011, Vol. 37, No. 3, pp. 109–128.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kryzhanovskii, S.A., Vititnova, M.B. Cardiovascular effects of nerve growth factor: An analytical review. Part II. Hum Physiol 37, 361–378 (2011). https://doi.org/10.1134/S0362119711030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119711030066

Keywords

Navigation