Skip to main content

The Biology of Neurotrophins: Cardiovascular Function

  • Chapter
  • First Online:
Neurotrophic Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 220))

Abstract

This chapter addresses the role of neurotrophins in the development of the heart, blood vessels, and neural circuits that control cardiovascular function, as well as the role of neurotrophins in the mature cardiovascular system. The cardiovascular system includes the heart and vasculature whose functions are tightly controlled by the nervous system. Neurons, cardiomyocytes, endothelial cells, vascular smooth muscle cells, and pericytes are all targets for neurotrophin action during development. Neurotrophin expression continues throughout life, and several common pathologies that impact cardiovascular function involve changes in the expression or activity of neurotrophins. These include atherosclerosis, hypertension, diabetes, acute myocardial infarction, and heart failure. In many of these conditions, altered expression of neurotrophins and/or neurotrophin receptors has direct effects on vascular endothelial and smooth muscle cells in addition to effects on nerves that modulate vascular resistance and cardiac function. This chapter summarizes the effects of neurotrophins in cardiovascular physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Morgan DA, Gutterman DD (1997) Protective role of nerve growth factor against postischemic dysfunction of sympathetic coronary innervation. Circulation 95:213–220

    PubMed  CAS  Google Scholar 

  • Al Shawi R, Hafner A, Chun S, Raza S, Crutcher K, Thrasivoulou C, Simons P, Cowen T (2007) ProNGF, sortilin, and age-related neurodegeneration. Ann N Y Acad Sci 1119:208–215

    PubMed  CAS  Google Scholar 

  • Andresen MC, Doyle MW, Bailey TW, Jin YH (2004) Differentiation of autonomic reflex control begins with cellular mechanisms at the first synapse within the nucleus tractus solitarius. Braz J Med Biol Res 37:549–558

    PubMed  CAS  Google Scholar 

  • Bacaner M, Brietenbucher J, LaBree J (2004) Prevention of ventricular fibrillation, acute myocardial infarction (myocardial necrosis), heart failure, and mortality by bretylium: is ischemic heart disease primarily adrenergic cardiovascular disease? Am J Ther 11:366–411

    PubMed  Google Scholar 

  • Balkowiec A, Kunze DL, Katz DM (2000) Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons. J Neurosci 20:1904–1911

    PubMed  CAS  Google Scholar 

  • Barzelay A, Ben-Shoshan J, Entin-Meer M, Maysel-Auslender S, Afek A, Barshack I, Keren G, George J (2010) A potential role for islet-1 in post-natal angiogenesis and vasculogenesis. Thromb Haemost 103:188–197

    PubMed  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    PubMed  CAS  Google Scholar 

  • Bierl MA, Jones EE, Crutcher KA, Isaacson LG (2005) ‘Mature’ nerve growth factor is a minor species in most peripheral tissues. Neurosci Lett 380:133–137

    PubMed  CAS  Google Scholar 

  • Boscan P, Pickering AE, Paton JF (2002) The nucleus of the solitary tract: an integrating station for nociceptive and cardiorespiratory afferents. Exp Physiol 87:259–266

    PubMed  Google Scholar 

  • Brady R, Zaidi SI, Mayer C, Katz DM (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19:2131–2142

    PubMed  CAS  Google Scholar 

  • Brock JA, Van Helden DF, Dosen P, Rush RA (1996) Prevention of high blood pressure by reducing sympathetic innervation in the spontaneously hypertensive rat. J Auton Nerv Syst 61:97–102

    PubMed  CAS  Google Scholar 

  • Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, Zappala G, Pafumi C, Bernardini R (2002) Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J 16:1307–1309

    PubMed  CAS  Google Scholar 

  • Caporali A, Emanueli C (2009) Cardiovascular actions of neurotrophins. Physiol Rev 89:279–308

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caporali A, Pani E, Horrevoets AJ, Kraenkel N, Oikawa A, Sala-Newby GB, Meloni M, Cristofaro B, Graiani G, Leroyer AS, Boulanger CM, Spinetti G, Yoon SO, Madeddu P, Emanueli C (2008a) Neurotrophin p75 receptor (p75NTR) promotes endothelial cell apoptosis and inhibits angiogenesis: implications for diabetes-induced impaired neovascularization in ischemic limb muscles. Circ Res 103:e15–e26

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caporali A, Sala-Newby GB, Meloni M, Graiani G, Pani E, Cristofaro B, Newby AC, Madeddu P, Emanueli C (2008b) Identification of the prosurvival activity of nerve growth factor on cardiac myocytes. Cell Death Differ 15:299–311

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    PubMed  CAS  Google Scholar 

  • Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416

    PubMed  CAS  Google Scholar 

  • Cimini M, Fazel S, Zhuo S, Xaymardan M, Fujii H, Weisel RD, Li RK (2007) c-kit dysfunction impairs myocardial healing after infarction. Circulation 116:I77–I82

    PubMed  CAS  Google Scholar 

  • Conover JC, Erickson JT, Katz DM, Bianchi LM, Poueymirou WT, McClain J, Pan L, Helgren M, Ip NY, Boland P (1995) Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature 375:235–238

    PubMed  CAS  Google Scholar 

  • Corea L, Bentivoglio M, Verdecchia P (1983) Echocardiographic left ventricular hypertrophy as related to arterial pressure and plasma norepinephrine concentration in arterial hypertension. Reversal by atenolol treatment. Hypertension 5:837–843

    PubMed  CAS  Google Scholar 

  • Corea L, Bentivoglio M, Verdecchia P, Motolese M (1984) Plasma norepinephrine and left ventricular hypertrophy in systemic hypertension. Am J Cardiol 53:1299–1303

    PubMed  CAS  Google Scholar 

  • Cristofaro B, Stone OA, Caporali A, Dawbarn D, Ieronimakis N, Reyes M, Madeddu P, Bates DO, Emanueli C (2010) Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia. Arterioscler Thromb Vasc Biol 30:1143–1150

    PubMed Central  PubMed  CAS  Google Scholar 

  • Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armaninl MP, Ling LH, McMahon SB, Shelton DL, Levinson AD, Phillips HS (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011

    PubMed  CAS  Google Scholar 

  • Dolle JP, Rezvan A, Allen FD, Lazarovici P, Lelkes PI (2005) Nerve growth factor-induced migration of endothelial cells. J Pharmacol Exp Ther 315:1220–1227

    PubMed  CAS  Google Scholar 

  • Donovan MJ, Miranda RC, Kraemer R, McCaffrey TA, Tessarollo L, Mahadeo D, Sharif S, Kaplan DR, Tsoulfas P, Parada L (1995) Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol 147:309–324

    PubMed Central  PubMed  CAS  Google Scholar 

  • Donovan MJ, Hahn R, Tessarollo L, Hempstead BL (1996) Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat Genet 14:210–213

    PubMed  CAS  Google Scholar 

  • Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibanez CF, Rafii S, Hempstead BL (2000) Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127:4531–4540

    PubMed  CAS  Google Scholar 

  • Drapeau J, El-Helou V, Clement R, Bel-Hadj S, Gosselin H, Trudeau LE, Villeneuve L, Calderone A (2005) Nestin-expressing neural stem cells identified in the scar following myocardial infarction. J Cell Physiol 204:51–62

    PubMed  CAS  Google Scholar 

  • Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667

    PubMed  CAS  Google Scholar 

  • Ejiri M, Fujita M, Sakai O, Miwa K, Asanoi H, Sasayama S (1990) Development of collateral circulation after acute myocardial infarction: its role in preserving left ventricular function. J Cardiol 20:31–37

    PubMed  CAS  Google Scholar 

  • ElShamy WM, Ernfors P (1997) Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 complement and cooperate with each other sequentially during visceral neuron development. J Neurosci 17:8667–8675

    PubMed  CAS  Google Scholar 

  • Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P (2002) Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 106:2257–2262

    PubMed  CAS  Google Scholar 

  • Erickson JT, Conover JC, Borday V, Champagnat J, Barbacid M, Yancopoulos G, Katz DM (1996) Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 16:5361–5371

    PubMed  CAS  Google Scholar 

  • Esler M, Kaye D, Lambert G, Esler D, Jennings G (1997) Adrenergic nervous system in heart failure. Am J Cardiol 80:7L–14L

    PubMed  CAS  Google Scholar 

  • Faerman I, Faccio E, Milei J, Nunez R, Jadzinsky M, Fox D, Rapaport M (1977) Autonomic neuropathy and painless myocardial infarction in diabetic patients. Histologic evidence of their relationship. Diabetes 26:1147–1158

    PubMed  CAS  Google Scholar 

  • Falckh PH, Harkin LA, Head RJ (1992) Nerve growth factor mRNA content parallels altered sympathetic innervation in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 19:541–545

    PubMed  CAS  Google Scholar 

  • Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A, Sylven C, Grinnemo KH (2010) Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells Dev 19:1601–1615

    PubMed  CAS  Google Scholar 

  • Glebova NO, Ginty DD (2004) Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 24:743–751

    PubMed  CAS  Google Scholar 

  • Glebova NO, Ginty DD (2005) Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci 28:191–222

    PubMed  CAS  Google Scholar 

  • Graiani G, Emanueli C, Desortes E, Van Linthout S, Pinna A, Figueroa CD, Manni L, Madeddu P (2004) Nerve growth factor promotes reparative angiogenesis and inhibits endothelial apoptosis in cutaneous wounds of Type 1 diabetic mice. Diabetologia 47:1047–1054

    PubMed  CAS  Google Scholar 

  • Grassi G, Seravalle G, Quarti-Trevano F (2010) The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol 95:581–586

    PubMed  Google Scholar 

  • Habecker BA, Bilimoria P, Linick C, Gritman K, Lorentz CU, Woodward W, Birren SJ (2008) Regulation of cardiac innervation and function via the p75 neurotrophin receptor. Auton Neurosci 140:40–48

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hansen-Algenstaedt N, Algenstaedt P, Schaefer C, Hamann A, Wolfram L, Cingoz G, Kilic N, Schwarzloh B, Schroeder M, Joscheck C, Wiesner L, Ruther W, Ergun S (2006) Neural driven angiogenesis by overexpression of nerve growth factor. Histochem Cell Biol 125:637–649

    PubMed  CAS  Google Scholar 

  • Hasan W, Smith PG (2009) Modulation of rat parasympathetic cardiac ganglion phenotype and NGF synthesis by adrenergic nerves. Auton Neurosci 145:17–26

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hasan W, Pedchenko T, Krizsan-Agbas D, Baum L, Smith PG (2003) Sympathetic neurons synthesize and secrete pro-nerve growth factor protein. J Neurobiol 57:38–53

    PubMed  CAS  Google Scholar 

  • Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al Hafez B, Bilgen M, Smith PG (2006) Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 1124:142–154

    PubMed Central  PubMed  CAS  Google Scholar 

  • Head RJ (1989) Hypernoradrenergic innervation: its relationship to functional and hyperplastic changes in the vasculature of the spontaneously hypertensive rat. Blood Vessels 26:1–20

    PubMed  CAS  Google Scholar 

  • Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45–55

    PubMed  CAS  Google Scholar 

  • Hellweg R, Hartung HD (1990) Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 26:258–267

    PubMed  CAS  Google Scholar 

  • Henning RJ, Sawmiller DR (2001) Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 49:27–37

    PubMed  CAS  Google Scholar 

  • Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ (2008) Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. J Mol Cell Cardiol 44:477–485

    PubMed  CAS  Google Scholar 

  • Hiltunen JO, Arumae U, Moshnyakov M, Saarma M (1996) Expression of mRNAs for neurotrophins and their receptors in developing rat heart. Circ Res 79:930–939

    PubMed  CAS  Google Scholar 

  • Hiltunen JO, Laurikainen A, Vakeva A, Meri S, Saarma M (2001) Nerve growth factor and brain-derived neurotrophic factor mRNAs are regulated in distinct cell populations of rat heart after ischaemia and reperfusion. J Pathol 194:247–253

    PubMed  CAS  Google Scholar 

  • Huang CC, Chen PC, Huang CW, Yu J (2007) Aristolochic acid induces heart failure in zebrafish embryos that is mediated by inflammation. Toxicol Sci 100:486–494

    PubMed  CAS  Google Scholar 

  • Huber LJ, Hempstead B, Donovan MJ (1996) Neurotrophin and neurotrophin receptors in human fetal kidney. Dev Biol 179:369–381

    PubMed  CAS  Google Scholar 

  • Ieda M, Fukuda K (2009) Cardiac innervation and sudden cardiac death. Curr Cardiol Rev 5:289–295

    PubMed Central  PubMed  Google Scholar 

  • Ieda M, Kanazawa H, Ieda Y, Kimura K, Matsumura K, Tomita Y, Yagi T, Onizuka T, Shimoji K, Ogawa S, Makino S, Sano M, Fukuda K (2006) Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation 114:2351–2363

    PubMed  CAS  Google Scholar 

  • Kaye DM, Vaddadi G, Gruskin SL, Du XJ, Esler MD (2000) Reduced myocardial nerve growth factor expression in human and experimental heart failure. Circ Res 86:E80–E84

    PubMed  CAS  Google Scholar 

  • Kermani P, Rafii D, Jin DK, Whitlock P, Schaffer W, Chiang A, Vincent L, Friedrich M, Shido K, Hackett NR, Crystal RG, Rafii S, Hempstead BL (2005) Neurotrophins promote revascularization by local recruitment of TrkB + endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest 115:653–663

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546

    PubMed  CAS  Google Scholar 

  • Kimura K, Kanazawa H, Ieda M, Kawaguchi-Manabe H, Miyake Y, Yagi T, Arai T, Sano M, Fukuda K (2010) Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci 156:27–35

    PubMed  CAS  Google Scholar 

  • Kline DD, Ogier M, Kunze DL, Katz DM (2010) Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 30:5303–5310

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kodama K, Kusuoka H, Sakai A, Adachi T, Hasegawa S, Ueda Y, Mishima M, Hori M, Kamada T, Inoue M, Hirayama A (1996) Collateral channels that develop after an acute myocardial infarction prevent subsequent left ventricular dilation. J Am Coll Cardiol 27:1133–1139

    PubMed  CAS  Google Scholar 

  • Kohn J, Aloyz RS, Toma JG, Haak-Frendscho M, Miller FD (1999) Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J Neurosci 19:5393–5408

    PubMed  CAS  Google Scholar 

  • Kraemer R, Nguyen H, March KL, Hempstead B (1999) NGF activates similar intracellular signaling pathways in vascular smooth muscle cells as PDGF-BB but elicits different biological responses. Arterioscler Thromb Vasc Biol 19:1041–1050

    PubMed  CAS  Google Scholar 

  • Kreusser MM, Haass M, Buss SJ, Hardt SE, Gerber SH, Kinscherf R, Katus HA, Backs J (2006) Injection of nerve growth factor into stellate ganglia improves norepinephrine reuptake into failing hearts. Hypertension 47:209–215

    PubMed  CAS  Google Scholar 

  • Kreusser MM, Buss SJ, Krebs J, Kinscherf R, Metz J, Katus HA, Haass M, Backs J (2008) Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol 44:380–387

    PubMed  CAS  Google Scholar 

  • Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118:243–255

    PubMed  CAS  Google Scholar 

  • Lai LP, Fan TH, Delehanty JM, Yatani A, Liang CS (1996) Elevated myocardial interstitial norepinephrine concentration contributes to the regulation of Na+, K(+)-ATPase in heart failure. Eur J Pharmacol 309:235–241

    PubMed  CAS  Google Scholar 

  • Langer A, Freeman MR, Josse RG, Armstrong PW (1995) Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol 25:610–618

    PubMed  CAS  Google Scholar 

  • Laycock SK, Kane KA, McMurray J, PARRATT JR (1996) Captopril and norepinephrine-induced hypertrophy and haemodynamics in rats. J Cardiovasc Pharmacol 27:667–672

    PubMed  CAS  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    PubMed  CAS  Google Scholar 

  • Levenberg S, Burdick JA, Kraehenbuehl T, Langer R (2005) Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng 11:506–512

    PubMed  CAS  Google Scholar 

  • Levy MN (1990) Autonomic interactions in cardiac control. Ann N Y Acad Sci 601:209–221

    PubMed  CAS  Google Scholar 

  • Li YJ, Peng J (2002) The cardioprotection of calcitonin gene-related peptide-mediated preconditioning. Eur J Pharmacol 442:173–177

    PubMed  CAS  Google Scholar 

  • Lockhart ST, Mead JN, Pisano JM, Slonimsky JD, Birren SJ (2000) Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. J Neurobiol 42:460–476

    PubMed  CAS  Google Scholar 

  • Lorentz CU, Alston EN, Belcik JT, Lindner JR, Giraud GD, Habecker BA (2010) Heterogeneous ventricular sympathetic innervation, altered beta adrenergic receptor expression, and rhythm instability in mice lacking p75 neurotrophin receptor. Am J Physiol Heart Circ Physiol 298:H1652–H1660

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luther JA, Birren SJ (2009) p75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents. J Neurosci 29:5411–5424

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luttun A et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8:831–840

    PubMed  CAS  Google Scholar 

  • Martin JL, Jenkins VK, Hsieh HY, Balkowiec A (2009) Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses. J Neurochem 108:450–464

    PubMed Central  PubMed  CAS  Google Scholar 

  • Max SR, Rohrer H, Otten U, Thoenen H (1978) Nerve growth factor-mediated induction of tyrosine hydroxylase in rat superior cervical ganglia in vitro. J Biol Chem 253:8013–8015

    PubMed  CAS  Google Scholar 

  • McMahon SB, Bennett DL, Priestley JV, Shelton DL (1995) The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nat Med 1:774–780

    PubMed  CAS  Google Scholar 

  • Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S, Spillmann F, Campesi I, Madeddu P, Quaini F, Emanueli C (2010) Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res 106:1275–1284

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meloni M, Descamps B, Caporali A, Zentilin L, Floris I, Giacca M, Emanueli C (2012) Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 61:229–240

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848

    PubMed  CAS  Google Scholar 

  • Oh YS, Jong AY, Kim DT, Li H, Wang C, Zemljic-Harpf A, Ross RS, Fishbein MC, Chen PS, Chen LS (2006) Spatial distribution of nerve sprouting after myocardial infarction in mice. Heart Rhythm 3:728–736

    PubMed  Google Scholar 

  • Palko ME, Coppola V, Tessarollo L (1999) Evidence for a role of truncated trkC receptor isoforms in mouse development. J Neurosci 19:775–782

    PubMed  CAS  Google Scholar 

  • Park MJ, Kwak HJ, Lee HC, Yoo DH, Park IC, Kim MS, Lee SH, Rhee CH, Hong SI (2007) Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem 282:30485–30496

    PubMed  CAS  Google Scholar 

  • Park KA, Fehrenbacher JC, Thompson EL, Duarte DB, Hingtgen CM, Vasko MR (2010) Signaling pathways that mediate nerve growth factor-induced increase in expression and release of calcitonin gene-related peptide from sensory neurons. Neuroscience 171:910–923

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patel TD, Jackman A, Rice FL, Kucera J, Snider WD (2000) Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25:345–357

    PubMed  CAS  Google Scholar 

  • Paul CE, Vereker E, Dickson KM, Barker PA (2004) A pro-apoptotic fragment of the p75 neurotrophin receptor is expressed in p75NTRExonIV null mice. J Neurosci 24:1917–1923

    PubMed  CAS  Google Scholar 

  • Pop-Busui R (2010) Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care 33:434–441

    PubMed Central  PubMed  Google Scholar 

  • Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115:2382–2392

    PubMed Central  PubMed  CAS  Google Scholar 

  • Potts JT (2002) Neural circuits controlling cardiorespiratory responses: baroreceptor and somatic afferents in the nucleus tractus solitarius. Clin Exp Pharmacol Physiol 29:103–111

    PubMed  CAS  Google Scholar 

  • Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24:344–350

    PubMed  CAS  Google Scholar 

  • Qin F, Vulapalli RS, Stevens SY, Liang CS (2002) Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. Am J Physiol Heart Circ Physiol 282:H363–H371

    PubMed  CAS  Google Scholar 

  • Rahbek UL, Dissing S, Thomassen C, Hansen AJ, Tritsaris K (2005) Nerve growth factor activates aorta endothelial cells causing PI3K/Akt- and ERK-dependent migration. Pflugers Arch 450:355–361

    PubMed  CAS  Google Scholar 

  • Rana OR, Schauerte P, Hommes D, Schwinger RH, Schroder JW, Hoffmann R, Saygili E (2010) Mechanical stretch induces nerve sprouting in rat sympathetic neurocytes. Auton Neurosci 155:25–32

    PubMed  Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    PubMed  CAS  Google Scholar 

  • Roosen A, Schober A, Strelau J, Bottner M, Faulhaber J, Bendner G, McIlwrath SL, Seller H, Ehmke H, Lewin GR, Unsicker K (2001) Lack of neurotrophin-4 causes selective structural and chemical deficits in sympathetic ganglia and their preganglionic innervation. J Neurosci 21:3073–3084

    PubMed  CAS  Google Scholar 

  • Rubart M, Zipes DP (2005) Mechanisms of sudden cardiac death. J Clin Invest 115:2305–2315

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P, Emanueli C (2004) Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia 47:1055–1063

    PubMed  CAS  Google Scholar 

  • Santos PM, Winterowd JG, Allen GG, Bothwell MA, Rubel EW (1991) Nerve growth factor: increased angiogenesis without improved nerve regeneration. Otolaryngol Head Neck Surg 105:12–25

    PubMed  CAS  Google Scholar 

  • Saygili E, Schauerte P, Pekassa M, Saygili E, Rackauskas G, Schwinger RH, Weis J, Weber C, Marx N, Rana OR (2011) Sympathetic neurons express and secrete MMP-2 and MT1-MMP to control nerve sprouting via Pro-NGF conversion. Cell Mol Neurobiol 31:17–25

    PubMed  CAS  Google Scholar 

  • Scarisbrick IA, Jones EG, Isackson PJ (1993) Coexpression of mRNAs for NGF, BDNF, and NT-3 in the cardiovascular system of the pre- and postnatal rat. J Neurosci 13:875–893

    PubMed  CAS  Google Scholar 

  • Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ (1999) Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 48:603–608

    PubMed  CAS  Google Scholar 

  • Shadiack AM, Sun Y, Zigmond RE (2001) Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. J Neurosci 21:363–371

    PubMed  CAS  Google Scholar 

  • Sharma N, Deppmann CD, Harrington AW, St Hillaire C, Chen ZY, Lee FS, Ginty DD (2010) Long-distance control of synapse assembly by target-derived NGF. Neuron 67:422–434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shmelkov SV, Meeus S, Moussazadeh N, Kermani P, Rashbaum WK, Rabbany SY, Hanson MA, Lane WJ, St Clair R, Walsh KA, Dias S, Jacobson JT, Hempstead BL, Edelberg JM, Rafii S (2005) Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue. Circulation 111:1175–1183

    PubMed  CAS  Google Scholar 

  • Siao CJ, Lorentz CU, Kermani P, Marinic T, Carter J, McGrath K, Padow VA, Mark W, Falcone DJ, Cohen-Gould L, Parrish DC, Habecker BA, Nykjaer A, Ellenson LH, Tessarollo L, Hempstead BL (2012) ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. J Exp Med 209(12):2291–2305

    PubMed Central  PubMed  CAS  Google Scholar 

  • Skoff AM, Adler JE (2006) Nerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors. Exp Neurol 197:430–436

    PubMed  CAS  Google Scholar 

  • Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–249

    PubMed  CAS  Google Scholar 

  • Smith-White MA, Iismaa TP, Potter EK (2003) Galanin and neuropeptide Y reduce cholinergic transmission in the heart of the anaesthetised mouse. Br J Pharmacol 140:170–178

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stevens MJ, Raffel DM, Allman KC, Dayanikli F, Ficaro E, Sandford T, Wieland DM, Pfeifer MA, Schwaiger M (1998) Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 98:961–968

    PubMed  CAS  Google Scholar 

  • Supowit SC, Ethridge RT, Zhao H, Katki KA, Dipette DJ (2005) Calcitonin gene-related peptide and substance P contribute to reduced blood pressure in sympathectomized rats. Am J Physiol Heart Circ Physiol 289:H1169–H1175

    PubMed  CAS  Google Scholar 

  • Takeo C, Nakamura S, Tanaka T, Uchida D, Noguchi Y, Nagao T, Saito Y, Tatsuno I (2003) Rat cerebral endothelial cells express trk C and are regulated by neurotrophin-3. Biochem Biophys Res Commun 305:400–406

    PubMed  CAS  Google Scholar 

  • Tessarollo L (1998) Pleiotropic functions of neurotrophins in development. Cytokine Growth Factor Rev 9:125–137

    PubMed  CAS  Google Scholar 

  • Tessarollo L, Tsoulfas P, Donovan MJ, Palko ME, Blair-Flynn J, Hempstead BL, Parada LF (1997) Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proc Natl Acad Sci USA 94:14776–14781

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thoenen H (1972) Comparison between the effect of neuronal activity and nerve growth factor on the enzymes involved in the synthesis of norepinephrine. Pharmacol Rev 24:255–267

    PubMed  CAS  Google Scholar 

  • Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41:233–243

    PubMed  CAS  Google Scholar 

  • Tsoporis JN, Marks A, Kahn HJ, Butany JW, Liu PP, O’Hanlon D, Parker TG (1998) Inhibition of norepinephrine-induced cardiac hypertrophy in s100beta transgenic mice. J Clin Invest 102:1609–1616

    PubMed Central  PubMed  CAS  Google Scholar 

  • von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, Dechant G (2001) Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci 4:977–978

    Google Scholar 

  • Wagner N, Wagner KD, Theres H, Englert C, Schedl A, Scholz H (2005) Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms’ tumor transcription factor Wt1. Genes Dev 19:2631–2642

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang S, Bray P, McCaffrey T, March K, Hempstead BL, Kraemer R (2000) p75(NTR) mediates neurotrophin-induced apoptosis of vascular smooth muscle cells. Am J Pathol 157:1247–1258

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang H, Ward N, Boswell M, Katz DM (2006) Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells. Eur J Neurosci 23:1665–1670

    PubMed  Google Scholar 

  • Wernli G, Hasan W, Bhattacherjee A, van Rooijen N, Smith PG (2009) Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol 104:681–693

    PubMed Central  PubMed  Google Scholar 

  • Xiang FL, Lu X, Hammoud L, Zhu P, Chidiac P, Robbins J, Feng Q (2009) Cardiomyocyte-specific overexpression of human stem cell factor improves cardiac function and survival after myocardial infarction in mice. Circulation 120:1065–1074

    PubMed  CAS  Google Scholar 

  • Yagi J, Wenk HN, Naves LA, McCleskey EW (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res 99:501–509

    PubMed  CAS  Google Scholar 

  • Zettler C, Rush RA (1993) Elevated concentrations of nerve growth factor in heart and mesenteric arteries of spontaneously hypertensive rats. Brain Res 614:15–20

    PubMed  CAS  Google Scholar 

  • Zhang SH, Rush RA (2001) Neurotrophin 3 is increased in the spontaneously hypertensive rat. J Hypertens 19:2251–2256

    PubMed  CAS  Google Scholar 

  • Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Habecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg 2014

About this chapter

Cite this chapter

Emanueli, C., Meloni, M., Hasan, W., Habecker, B.A. (2014). The Biology of Neurotrophins: Cardiovascular Function. In: Lewin, G., Carter, B. (eds) Neurotrophic Factors. Handbook of Experimental Pharmacology, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45106-5_12

Download citation

Publish with us

Policies and ethics