Skip to main content
Log in

G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Differentiated vascular smooth muscle cells (VSMCs) are critical determinants of vascular tone and blood pressure. However, during vascular remodeling processes, which occur in response to changing hemodynamics or vascular injury, VSMCs lose most of their contractile functions in a dedifferentiation process, which goes along with cell proliferation and cell migration. VSMCs are under the constant control of a variety of mediators with vasocontractile or vasodilatory properties. Most of these mediators act through G-protein-coupled receptors, which, via different downstream signaling pathways, regulate the phosphorylation of myosin light chain and thereby control vascular tone. Recent work indicates that procontractile G-protein-mediated signal transduction pathways are also critical regulators of vascular smooth muscle dedifferentiation and redifferentiation. This review describes some of the key G-protein-mediated signal transduction pathways regulating vascular tone and VSMC differentiation and their involvement in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walsh MP (2011) Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life 63:987–1000

    Article  CAS  PubMed  Google Scholar 

  2. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    CAS  PubMed  Google Scholar 

  3. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372:231–236

    Article  CAS  PubMed  Google Scholar 

  4. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    Article  CAS  PubMed  Google Scholar 

  5. Burdyga T, Paul RJ (2012) Calcium homeostatis and signaling in smooth muscle. In: Hill JA, Olson EN (eds) Muscle: fundamental biology and mechanisms of disease. Elsevier Academic Press, London/Waltham/SanDiego, pp 1155–1171

    Chapter  Google Scholar 

  6. Puetz S, Lubomirov LT, Pfitzer G (2009) Regulation of smooth muscle contraction by small GTPases. Physiology (Bethesda) 24:342–356

    Article  CAS  Google Scholar 

  7. Gohla A, Schultz G, Offermanns S (2000) Role for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction. Circ Res 87:221–227

    Article  CAS  PubMed  Google Scholar 

  8. Wirth A, Benyo Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S, Orsy P, Horvath B, Maser-Gluth C, Greiner E et al (2008) G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med 14:64–68

    Article  CAS  PubMed  Google Scholar 

  9. Fukuhara S, Chikumi H, Gutkind JS (2001) RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20:1661–1668

    Article  CAS  PubMed  Google Scholar 

  10. Wuertz CM, Lorincz A, Vettel C, Thomas MA, Wieland T, Lutz S (2010) p63RhoGEF—a key mediator of angiotensin II-dependent signaling and processes in vascular smooth muscle cells. FASEB J 24:4865–4876

    Article  CAS  PubMed  Google Scholar 

  11. Booden MA, Siderovski DP, Der CJ (2002) Leukemia-associated Rho guanine nucleotide exchange factor promotes G alpha q-coupled activation of RhoA. Mol Cell Biol 22:4053–4061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guilluy C, Bregeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L, Henrion D, Scalbert E, Bril A, Torres RM et al (2010) The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med 16:183–190

    Article  CAS  PubMed  Google Scholar 

  13. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  Google Scholar 

  14. Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  CAS  PubMed  Google Scholar 

  15. Hofmann F (2004) Smooth muscle tone regulation. In: Rosenthal W (ed) Offermanns S. Encyclopedic reference of molecular pharmacology Springer-Verlag, Heidelberg, pp 870–875

    Google Scholar 

  16. Murthy KS (2006) Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol 68:345–374

    Article  CAS  PubMed  Google Scholar 

  17. Alexander MR, Owens GK (2012) Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annual Rev Physiol 74(74):13–40

    Article  CAS  PubMed  Google Scholar 

  18. Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556

    Article  CAS  PubMed  Google Scholar 

  19. Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, Kim HL, Park JM, Kim DK, Jung SJ et al (2001) Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 18:235–245

    Article  CAS  PubMed  Google Scholar 

  20. Wamhoff BR, Lynch KR, Macdonald TL, Owens GK (2008) Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 28:1454–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hahn AW, Resink TJ, Kern F, Buhler FR (1992) Effects of endothelin-1 on vascular smooth muscle cell phenotypic differentiation. J Cardiovasc Pharmacol 20(Suppl 12):S33–S36

    Article  CAS  PubMed  Google Scholar 

  22. Morishita R, Nagata K, Ito H, Ueda H, Asano M, Shinohara H, Kato K, Asano T (2007) Expression of smooth muscle cell-specific proteins in neural progenitor cells induced by agonists of G protein-coupled receptors and transforming growth factor-beta. J Neurochem 101:1031–1040

    Article  CAS  PubMed  Google Scholar 

  23. Dulin NO, Orlov SN, Kitchen CM, Voyno-Yasenetskaya TA, Miano JM (2001) G-protein-coupled-receptor activation of the smooth muscle calponin gene. Biochem J 357:587–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Smyth SS, Cheng HY, Miriyala S, Panchatcharam M, Morris AJ (2008) Roles of lysophosphatidic acid in cardiovascular physiology and disease. Biochim Biophys Acta 1781:563–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Martin K, Weiss S, Metharom P, Schmeckpeper J, Hynes B, O’Sullivan J, Caplice N (2009) Thrombin stimulates smooth muscle cell differentiation from peripheral blood mononuclear cells via protease-activated receptor-1, RhoA, and myocardin. Circ Res 105:214–218

    Article  CAS  PubMed  Google Scholar 

  26. Althoff TF, Juarez JA, Troidl K, Tang C, Wang S, Wirth A, Takefuji M, Wettschureck N, Offermanns S (2012) Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. J Exp Med 209:2277–2290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Medlin MD, Staus DP, Dubash AD, Taylor JM, Mack CP (2010) Sphingosine 1-phosphate receptor 2 signals through leukemia-associated RhoGEF (LARG), to promote smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 30:1779–1786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wamhoff BR, Bowles DK, McDonald OG, Sinha S, Somlyo AP, Somlyo AV, Owens GK (2004) L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a rho kinase/myocardin/SRF-dependent mechanism. Circ Res 95:406–414

    Article  CAS  PubMed  Google Scholar 

  29. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Staus DP, Blaker AL, Medlin MD, Taylor JM, Mack CP (2011) Formin homology domain-containing protein 1 regulates smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 31:360–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Staus DP, Blaker AL, Taylor JM, Mack CP (2007) Diaphanous 1 and 2 regulate smooth muscle cell differentiation by activating the myocardin-related transcription factors. Arterioscler Thromb Vasc Biol 27:478–486

    Article  CAS  PubMed  Google Scholar 

  32. Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K, Imaizumi T (2001) Role of Rho-associated kinase in neointima formation after vascular injury. Circulation 103:284–289

    Article  CAS  PubMed  Google Scholar 

  33. Noma K, Rikitake Y, Oyama N, Yan G, Alcaide P, Liu PY, Wang H, Ahl D, Sawada N, Okamoto R et al (2008) ROCK1 mediates leukocyte recruitment and neointima formation following vascular injury. J Clin Invest 118:1632–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ohtsu H, Suzuki H, Nakashima H, Dhobale S, Frank GD, Motley ED, Eguchi S (2006) Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension 48:534–540

    Article  CAS  PubMed  Google Scholar 

  35. Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2009) A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 15:75–83

    Article  CAS  PubMed  Google Scholar 

  36. Gunaje JJ, Bahrami AJ, Schwartz SM, Daum G, Mahoney WM Jr (2011) PDGF-dependent regulation of regulator of G protein signaling-5 expression and vascular smooth muscle cell functionality. Am J Physiol Cell Physiol 301:C478–C489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hendriks-Balk MC, van Loenen PB, Hajji N, Michel MC, Peters SL, Alewijnse AE (2008) S1P receptor signalling and RGS proteins; expression and function in vascular smooth muscle cells and transfected CHO cells. Eur J Pharmacol 600:1–9

    Article  CAS  PubMed  Google Scholar 

  38. Adams LD, Geary RL, Li J, Rossini A, Schwartz SM (2006) Expression profiling identifies smooth muscle cell diversity within human intima and plaque fibrous cap: loss of RGS5 distinguishes the cap. Arterioscler Thromb Vasc Biol 26:319–325

    Article  CAS  PubMed  Google Scholar 

  39. Kim MR, Jeon ES, Kim YM, Lee JS, Kim JH (2009) Thromboxane a(2) induces differentiation of human mesenchymal stem cells to smooth muscle-like cells. Stem Cells 27:191–199

    Article  CAS  PubMed  Google Scholar 

  40. Sachinidis A, Flesch M, Ko Y, Schror K, Bohm M, Dusing R, Vetter H (1995) Thromboxane A2 and vascular smooth muscle cell proliferation. Hypertension 26:771–780

    Article  CAS  PubMed  Google Scholar 

  41. Rateri DL, Moorleghen JJ, Knight V, Balakrishnan A, Howatt DA, Cassis LA, Daugherty A (2012) Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice. PLoS One 7:e51483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hsieh HL, Tung WH, Wu CY, Wang HH, Lin CC, Wang TS, Yang CM (2009) Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 29:1594–1601

    Article  CAS  PubMed  Google Scholar 

  43. Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM, Mack CP (2004) Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J Biol Chem 279:42422–42430

    Article  CAS  PubMed  Google Scholar 

  44. Alewijnse AE, Peters SL, Michel MC (2004) Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites. Br J Pharmacol 143:666–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR (1999) Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem 274:27351–27358

    Article  CAS  PubMed  Google Scholar 

  46. Daum G, Grabski A, Reidy MA (2009) Sphingosine 1-phosphate: a regulator of arterial lesions. Arterioscler Thromb Vasc Biol 29:1439–1443

    Article  CAS  PubMed  Google Scholar 

  47. Martorell L, Martinez-Gonzalez J, Rodriguez C, Gentile M, Calvayrac O, Badimon L (2008) Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 99:305–315

    CAS  PubMed  Google Scholar 

  48. Wilcox JN, Rodriguez J, Subramanian R, Ollerenshaw J, Zhong C, Hayzer DJ, Horaist C, Hanson SR, Lumsden A, Salam TA et al (1994) Characterization of thrombin receptor expression during vascular lesion formation. Circ Res 75:1029–1038

    Article  CAS  PubMed  Google Scholar 

  49. Nelken NA, Soifer SJ, O’Keefe J, Vu TK, Charo IF, Coughlin SR (1992) Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 90:1614–1621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cheng Y, Makarova N, Tsukahara R, Guo H, Shuyu E, Farrar P, Balazs L, Zhang C, Tigyi G (2009) Lysophosphatidic acid-induced arterial wall remodeling: requirement of PPARgamma but not LPA1 or LPA2 GPCR. Cell Signal 21:1874–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Osei-Owusu P, Sun X, Drenan RM, Steinberg TH, Blumer KJ (2007) Regulation of RGS2 and second messenger signaling in vascular smooth muscle cells by cGMP-dependent protein kinase. J Biol Chem 282:31656–31665

    Article  CAS  PubMed  Google Scholar 

  52. Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y et al (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    Article  CAS  PubMed  Google Scholar 

  53. Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286:1583–1587

    Article  CAS  PubMed  Google Scholar 

  54. Schlossmann J, Desch M (2011) IRAG and novel PKG targeting in the cardiovascular system. Am J Physiol Heart Circ Physiol 301:H672–H682

    Article  CAS  PubMed  Google Scholar 

  55. Zieba BJ, Artamonov MV, Jin L, Momotani K, Ho R, Franke AS, Neppl RL, Stevenson AS, Khromov AS, Chrzanowska-Wodnicka M et al (2011) The cAMP-responsive Rap1 guanine nucleotide exchange factor, epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem 286:16681–16692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Rolli-Derkinderen M, Sauzeau V, Boyer L, Lemichez E, Baron C, Henrion D, Loirand G, Pacaud P (2005) Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res 96:1152–1160

    Article  CAS  PubMed  Google Scholar 

  57. Azam MA, Yoshioka K, Ohkura S, Takuwa N, Sugimoto N, Sato K, Takuwa Y (2007) Ca2+-independent, inhibitory effects of cyclic adenosine 5′-monophosphate on Ca2+ regulation of phosphoinositide 3-kinase C2alpha, Rho, and myosin phosphatase in vascular smooth muscle. J Pharmacol Exp Ther 320:907–916

    Article  CAS  PubMed  Google Scholar 

  58. Klemm DJ, Watson PA, Frid MG, Dempsey EC, Schaack J, Colton LA, Nesterova A, Stenmark KR, Reusch JE (2001) cAMP response element-binding protein content is a molecular determinant of smooth muscle cell proliferation and migration. J Biol Chem 276:46132–46141

    Article  CAS  PubMed  Google Scholar 

  59. Blindt R, Bosserhoff AK, vom Dahl J, Hanrath P, Schror K, Hohlfeld T, Meyer-Kirchrath J (2002) Activation of IP and EP(3) receptors alters cAMP-dependent cell migration. Eur J Pharmacol 444:31–37

    Article  CAS  PubMed  Google Scholar 

  60. Fetalvero KM, Martin KA, Hwa J (2007) Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostagland Other Lipid Mediat 82:109–118

    Article  CAS  Google Scholar 

  61. Li F, Yu X, Szynkarski CK, Meng C, Zhou B, Barhoumi R, White RE, Heaps CL, Stallone JN, Han G (2013) Activation of GPER induces differentiation and inhibition of coronary artery smooth muscle cell proliferation. PLoS One 8:e64771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Haas E, Bhattacharya I, Brailoiu E, Damjanovic M, Brailoiu GC, Gao X, Mueller-Guerre L, Marjon NA, Gut A, Minotti R et al (2009) Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res 104:288–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Wang WC, Pauer SH, Smith DC, Dixon MA, Disimile DJ, Panebra A, An SS, Camoretti-Mercado B, Liggett SB (2014) Targeted transgenesis identifies galphas as the bottleneck in beta2-adrenergic receptor cell signaling and physiological function in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 307:L775–L780

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi S, Morishita R, Matsushita H, Nakagami H, Taniyama Y, Nakamura T, Aoki M, Yamamoto K, Higaki J, Ogihara T (2000) Cyclic AMP inhibited proliferation of human aortic vascular smooth muscle cells, accompanied by induction of p53 and p21. Hypertension 35:237–243

    Article  CAS  PubMed  Google Scholar 

  65. Palmer D, Tsoi K, Maurice DH (1998) Synergistic inhibition of vascular smooth muscle cell migration by phosphodiesterase 3 and phosphodiesterase 4 inhibitors. Circ Res 82:852–861

    Article  CAS  PubMed  Google Scholar 

  66. Souness JE, Hassall GA, Parrott DP (1992) Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors. Biochem Pharmacol 44:857–866

    Article  CAS  PubMed  Google Scholar 

  67. Graves LM, Bornfeldt KE, Raines EW, Potts BC, Macdonald SG, Ross R, Krebs EG (1993) Protein kinase a antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A 90:10300–10304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Indolfi C, Avvedimento EV, Di Lorenzo E, Esposito G, Rapacciuolo A, Giuliano P, Grieco D, Cavuto L, Stingone AM, Ciullo I et al (1997) Activation of cAMP-PKA signaling in vivo inhibits smooth muscle cell proliferation induced by vascular injury. Nat Med 3:775–779

    Article  CAS  PubMed  Google Scholar 

  69. Tsuchikane E, Fukuhara A, Kobayashi T, Kirino M, Yamasaki K, Kobayashi T, Izumi M, Otsuji S, Tateyama H, Sakurai M et al (1999) Impact of cilostazol on restenosis after percutaneous coronary balloon angioplasty. Circulation 100:21–26

    Article  CAS  PubMed  Google Scholar 

  70. Take S, Matsutani M, Ueda H, Hamaguchi H, Konishi H, Baba Y, Kawaratani H, Sugiura T, Iwasaka T, Inada M (1997) Effect of cilostazol in preventing restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 79:1097–1099

    Article  CAS  PubMed  Google Scholar 

  71. Bernelot Moens SJ, Schnitzler GR, Nickerson M, Guo H, Ueda K, Lu Q, Aronovitz MJ, Nickerson H, Baur WE, Hansen U et al (2012) Rapid estrogen receptor signaling is essential for the protective effects of estrogen against vascular injury. Circulation 126:1993–2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Li F, Li L, Qin X, Pan W, Feng F, Chen F, Zhu B, Liao D, Tanowitz H, Albanese C et al (2008) Apelin-induced vascular smooth muscle cell proliferation: the regulation of cyclin D1. Front Biosci 13:3786–3792

    Article  CAS  PubMed  Google Scholar 

  73. Kojima Y, Kundu RK, Cox CM, Leeper NJ, Anderson JA, Chun HJ, Ali ZA, Ashley EA, Krieg PA, Quertermous T (2010) Upregulation of the apelin-APJ pathway promotes neointima formation in the carotid ligation model in mouse. Cardiovasc Res 87:156–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Iaccarino G, Smithwick LA, Lefkowitz RJ, Koch WJ (1999) Targeting Gbeta gamma signaling in arterial vascular smooth muscle proliferation: a novel strategy to limit restenosis. Proc Natl Acad Sci U S A 96:3945–3950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Althoff is a participant in the Charité Clinical Scientist Program funded by the Charité-Universitätsmedizin Berlin and the Berlin Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Offermanns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althoff, T.F., Offermanns, S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med 93, 973–981 (2015). https://doi.org/10.1007/s00109-015-1305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1305-z

Keywords

Navigation