Skip to main content
Log in

Final blood lactate concentration after incremental test and aerobic performance

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The goal of this study was to test the hypothesis that, in groups of highly trained endurance athletes (first and junior national teams), the final blood lactate concentration at maximum aerobic performance decreased as their training status increased. This study was performed with 20 physically active volunteers and 45 highly trained middle- and long-distance endurance athletes (speed skaters, triathletes, and cross-country skiers). Significant negative correlations (r = −0.59 to −0.87) between the final blood lactate concentration after incremental tests until exhaustion and aerobic performance (anaerobic threshold (AT)) were found only for the groups of highly trained endurance athletes, but not for the group of physically active subjects. It was shown for highly trained speed skaters that the final lactate concentration in their blood decreased and the oxygen consumption at AT increased with an increase in the volume of type I muscle fibers in the working muscle (r = −0.84 and r = 0.7, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mader, A., Evaluation of the Endurance Performance of Marathon Runners and Theoretical Analysis of Test Results, J. Sports Med. Phys. Fitness, 1991, vol. 31, p. 1.

    CAS  PubMed  Google Scholar 

  2. Komi, P.V., Ito, A., Sjodin, B., Wallenstein, R., and Karlsson, J., Muscle Metabolism, Lactate Breaking Point, and Biomechanical Features of Endurance Running, Int. J. Sports Med., 1981, vol. 2, p. 148.

    Article  CAS  PubMed  Google Scholar 

  3. Popov, D.V., Bravyi, Ya.R., Lemesheva, Yu.S., Missina, S.S., Linde, E.V., Voronov, A.V., and Vinogradova, O.L., Prediction of Sports Results of Speed Skaters by the Results of Complex Morphophysiological Examination, Teor. Prakt. Fiz. Kul’t., 2008, vol. 9, p. 40.

    Google Scholar 

  4. Gollnick, P.D., Armstrong, R.B., Saubert, C.W., Piehl, K., and Saltin, B., Enzyme Activity and Fiber Composition in Skeletal Muscle of Untrained and Trained Men, J. Appl. Physiol., 1972, vol. 33, p. 312.

    CAS  PubMed  Google Scholar 

  5. Henriksson, J., Chi, M.M., Hintz, C.S., Young, D.A., Kaiser, K.K., Salmons, S., and Lowry, O.H., Chronic Stimulation of Mammalian Muscle: Changes in Enzymes of Six Metabolic Pathways, Am. J. Physiol., 1986, vol. 251, p. 614.

    Google Scholar 

  6. Kindermann, W., Simon, G., and Keul, J., The Significance of the Aerobic-Anaerobic Transition for the Determination of Work Load Intensities during Endurance Training, Eur. J. Appl. Physiol. Occup. Physiol., 1979, vol. 42, p. 25.

    Article  CAS  PubMed  Google Scholar 

  7. Voronov, A.V., Anatomicheskoe stroenie i biomekhanicheskie kharakteristiki myshts i sustavov nizhnikh konechnostei (Anatomical Structure and Biochemical Characteristics of Muscles and Joints of Lower Extremities), Moscow, 2003.

  8. Bangsbo, J. and Juel, C., Counterpoint: Lactic Acid Accumulation Is a Disadvantage during Muscle Activity, J. Appl. Physiol., 2006, vol. 100, p. 1412.

    CAS  PubMed  Google Scholar 

  9. Fitts, R.H., The Cross-Bridge Cycle and Skeletal Muscle Fatigue, J. Appl. Physiol., 2008, vol. 104, p. 551.

    Article  CAS  PubMed  Google Scholar 

  10. Bangsbo, J., Aagaard, T., Olsen, M., Kiens, B., Turcotte, L.P., and Richter, E.A., Lactate and H+ Uptake in Inactive Muscles during Intense Exercise in Man, J. Physiol., 1995, vol. 488,Pt. 1, p. 219.

    CAS  PubMed  Google Scholar 

  11. Nielsen, H.B., Febbraio, M.A., Ott, P., Krustrup, P., and Secher, N.H., Hepatic Lactate Uptake versus Leg Lactate Output during Exercise in Humans, J. Appl. Physiol., 2007, vol. 103, p. 1227.

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt, W., Prommer, N., Thoma, S., and Niss, A., The Oxygen Transport System in Kenyan Runners, in Book of Abstracts 14th Annual Congress of the Eur. College of Sport Science, 2009, p. 317.

  13. Tesch, P., Sjodin, B., and Karlsson, J., Relationship between Lactate Accumulation, LDH Activity, LDH Isozyme and Fibre Type Distribution in Human Skeletal Muscle, Acta Physiol. Scand., 1978, vol. 103, p. 40.

    Article  CAS  PubMed  Google Scholar 

  14. Coggan, A.R., Spina, R.J., Rogers, M.A., King, D.S., Brown, M., Nemeth, P.M., and Holloszy, J.O., Histochemical and Enzymatic Characteristics of Skeletal Muscle in Master Athletes, J. Appl. Physiol., 1990, vol. 68, p. 1896.

    Article  CAS  PubMed  Google Scholar 

  15. Costill, D.L., Fink, W.J., and Pollock, M.L., Muscle Fiber Composition and Enzyme Activities of Highly Trained Distance Runners, Med. Sci. Sports, 1976, vol. 8, pp. 96–100.

    CAS  PubMed  Google Scholar 

  16. Inbar, O., Kaiser, P., and Tesch, P., Relationships between Leg Muscle Fiber Type Distribution and Leg Exercise Performance, Int. J. Sports Med., 1981, vol. 2, p. 154.

    Article  CAS  PubMed  Google Scholar 

  17. Jansson, E. and Kaijser, L., Substrate Utilization and Enzymes in Skeletal Muscle of Extremely Endurance-Trained Men, J. Appl. Physiol., 1987, vol. 62, p. 999.

    CAS  PubMed  Google Scholar 

  18. Leblanc, P.J., Peters, S.J., Tunstall, R.J., Cameron-Smith, D., and Heigenhauser, G.J., Effects of Aerobic Training on Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase in Human Skeletal Muscle, J. Physiol., 2004, vol. 557, p. 559.

    Article  CAS  PubMed  Google Scholar 

  19. Apple, F.S. and Rogers, M.A., Skeletal Muscle Lactate Dehydrogenase Isozyme Alterations in Men and Women Marathon Runners, J. Appl. Physiol., 1986, vol. 61, p. 477.

    CAS  PubMed  Google Scholar 

  20. Apple, F.S., Tesch, P.A., CK and LD Isozymes in Human Single Muscle Fibers in Trained Athletes, J. Appl. Physiol., 1989, vol. 66, p. 2717.

    CAS  PubMed  Google Scholar 

  21. Saltin, B., Kim, C.K., Terrados, N., Larsen, H., Svedenhag, J., and Rolf, C.J., Morphology, Enzyme Activities and Buffer Capacity in Leg Muscles of Kenyan and Scandinavian Runners, Scand. J. Med. Sci. Sports, 1995, vol. 5, p. 222.

    CAS  PubMed  Google Scholar 

  22. Brooks, G.A., Dubouchaud, H., Brown, M., Sicurello, J.P., and Butz, C.E., Role of Mitochondrial Lactate Dehydrogenase and Lactate Oxidation in the Intracellular Lactate Shuttle, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, p. 1129.

    Article  CAS  PubMed  Google Scholar 

  23. Hakimi, P., Yang, J., Casadesus, G., Massillon, D., Tolentino-Silva, F., Nye, C.K., Cabrera, M.E., Hagen, D.R., Utter, C.B., Baghdy, Y., Johnson, D.H., Wilson, D.L., Kirwan, J.P., Kalhan, S.C., and Hanson, R.W., Overexpression of the Cytosolic Form of Phosphoenolpyruvate Carboxykinase (GTP) in Skeletal Muscle Repatterns Energy Metabolism in the Mouse, J. Biol. Chem., 2007, vol. 282, p. 32844.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Popov, S.S. Missina, Yu.S. Lemesheva, E.V. Lyubaeva, A.S. Borovik, O.L. Vinogradova, 2010, published in Fiziologiya Cheloveka, 2010, Vol. 36, No. 3, pp. 102–109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, D.V., Missina, S.S., Lemesheva, Y.S. et al. Final blood lactate concentration after incremental test and aerobic performance. Hum Physiol 36, 335–341 (2010). https://doi.org/10.1134/S0362119710030138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119710030138

Key words

Navigation