Skip to main content
Log in

The reflection of different aspects of brain activation in the electroencephalogram: Quantitative electroencephalography of the states of rest with the eyes open and closed

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The rest states with the eyes open (RSEO) and closed (RSEC) were subjected to quantitative EEG study as states similar in the pattern of mental activity and subjective assessments but different in the EEG pattern. The mean values of the spectral power and EEG coherence function were compared in 74 subjects for the following bands: Δ, ϑ, α1, α2, β1, β2, and γ. Upon the transition from the RSEC to the RSEO, the EEG local power significantly decreased over the whole cortex for the α, ϑ, and β bands. A simultaneous decrease in the EEG power in all the bands (including β and γ) was most pronounced (as judged by relative changes and tests of significance of difference) in the parietooccipital derivations immediately related to the cortical zones where an increase in the neuronal activity upon opening the eyes is most probable. A significant increase in the EEG power was observed only for the γ band in frontal derivations F 3 and F 4. Significant differences in the mean EEG coherence in the RSEO-RSEC comparison were present in many derivation pairs, especially in the α2, β1, β2, and γ bands. For each of these bands, the number of differences determined on the basis of Fisher test was more than 70% of the maximum possible number. In the overwhelming majority of cases, the coherence was lower in the RSEO; however, in the caudal cortical zones, a higher coherence in the α1, ϑ, and Δ bands in the RSEO was rather typical. The results confirmed that the two states under study differ in a number of averaged EEG parameters with high statistical significance and may be used as reference states during performance of tasks with the eyes open and closed, respectively. The differences between the RSEC and the RSEO may be caused by the fact that the RSEC is a functional state oriented predominantly to the analysis of internal information (internally oriented), and the RSEO, predominantly to the analysis of information coming from the outside (externally oriented). The pattern of the observed EEG differences points to a combination of effects both localized in the visual zone and reflecting changes in the network cortical activity, i.e., simultaneous, although nonuniform, changes over all the main zones of the cortex. Comparison of the results with published estimations of differences in the local cerebral blood flow (ICBF) between the RSEO and the RSEC shows that increase in the ICBF may be associated with a local decrease in the EEG spectral power in any frequency band, including the high-frequency β and γ bands, or several frequency bands simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niedermeyer, E., The Normal EEG of the Waking Adult, Electroencephalography. Basic Principles, Clinical Applications, and Related Fields, Niedermeyer, E. and Lopes da Silva, F.H., Eds., 3d ed., London: Williams and Wilkins, 1995, p. 149.

    Google Scholar 

  2. Steriade, M. and Amzica, F., Intracortical and Corticothalamic Coherency of Fast Spontaneous Oscillations, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 6, p. 2533.

    Article  PubMed  CAS  Google Scholar 

  3. Pulvermuller, F., Birbaumer, N., Lutzenberger, W., and Mohr, B., High-Frequency Brain Activity: Its Possible Role in Attention, Perception and Language Processing, Progr. Neurobiol., 1997, vol. 52, no. 5, p. 427.

    Article  PubMed  CAS  Google Scholar 

  4. Steriade, M., Corticothalamic Resonance, States of Vigilance and Mentation, Neuroscience, 2000, vol. 101, no. 2, p. 243.

    Article  PubMed  CAS  Google Scholar 

  5. Karakas, S., Basar-Eroglu, C., Ozesmi, C., et al., Gamma Response of the Brain: a Multifunctional Oscillation that Represents Bottom-up with Top-down Processing, Int. J. Psychophysiol., 2001, vol. 39, nos. 2–3, p. 137.

    Article  PubMed  CAS  Google Scholar 

  6. Danilova, N.N., Functional States, Psikhofiziologiya: Uchebnik dlya vuzov (Psychophysiology: A Text-Book for Higher School), Aleksandrov, Yu.I., Ed., St. Petersburg: Piter, 2003, second edition, p. 166.

    Google Scholar 

  7. Livanov, M.N., Prostranstvennaya organizatsiya protsessov golovnogo mozga (Spatial Organization of the Brain Processes), Shuranova, Zh.P., Ed., Moscow: Nauka, 1972.

    Google Scholar 

  8. Sviderskaya, N.E., Sinkhronnaya elektrichaskaya aktivnost’ mozga i psikhicheskie protsessy (Synchronous Electrical Activity of the Brain and Mental Processes), Moscow: Nauka, 1987.

    Google Scholar 

  9. Elul, R., The Genesis of the EEG, Int. Rev. Neurobiol., 1972, vol. 15, no. 2, p. 227.

    Article  Google Scholar 

  10. Zhadin, M.N., Biofizicheskie mekhanizmy formirovaniya elektroentsefalogrammy (Biophysical Mechanisms of the Electroencephalogram Formation), Moscow: Nauka, 1984.

    Google Scholar 

  11. Lopes da Silva, F., Neural Mechanisms Underlying Brain Waves: From Neural Membranes to Networks, EEG and Clin. Neurophysiol., 1991, vol. 79, no. 2, p. 81.

    Article  CAS  Google Scholar 

  12. Osovets, S.M., Ginzburg, D.A., Gurfinkel’, V.S., et al., Electrical Brain Activity: Mechanisms and Interpretation, Usp. Fiziol. Nauk, 1983, vol. 141, no. 1, p. 103.

    Google Scholar 

  13. Matsuoka, S., Theta Rhythms: State of Consciousness, Brain Topogr., 1990, vol. 3, no. 1, p. 203.

    Article  PubMed  CAS  Google Scholar 

  14. Basar, E., Schurmann, M., Basar-Eroglu, C., and Karakas, S., Alpha Oscillations in Brain Functioning: An Integrative Theory, Int. J. Psychophysiol., 1997, vol. 26, nos. 1–3, p. 5.

    Article  PubMed  CAS  Google Scholar 

  15. Niedermeyer, E., Alpha Rhythms as Physiological and Abnormal Phenomena, Int. J. Psychophysiol., 1997, vol. 26, nos. 1–3, p. 31.

    Article  PubMed  CAS  Google Scholar 

  16. Klimesch, W., EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis, Brain Res. Brain Res. Rev., 1999, vol. 29, nos. 2–3, p. 169.

    Article  PubMed  CAS  Google Scholar 

  17. Nunez, P.L., Generation of Human EEG by a Combination of Long-and Short-Range Neocortical Interactions, Brain Topography, 1989, vol. 1, p. 199.

    Article  PubMed  CAS  Google Scholar 

  18. Nunez, P.L., Toward a Quantitative Description of Large Scale Neocortical Dynamic Function and EEG, Behav. Brain Sci., 2000, vol. 23, no. 3, p. 371.

    Article  PubMed  CAS  Google Scholar 

  19. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., et al., A Default Mode of Brain Function, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 2, p. 676.

    Article  PubMed  CAS  Google Scholar 

  20. Gusnard, D.A. and Raichle, M.E., Searching for a Baseline: Functional Imaging and the Resting Human Brain, Natl. Rev. Neurosci., 2001, vol. 2, p. 685.

    Article  CAS  Google Scholar 

  21. Feige, B., Scheffler, K., Esposito, F., et al., Cortical and Subcortical Correlates of Electroencephalographic Alpha Rhythm Modulations, J. Neurophysiol., 2005, vol. 93, no. 5, p. 2864.

    Article  PubMed  Google Scholar 

  22. Berger, H., Uber das Elektrenkephalogramm des Menschen, Arch. Psychiatr. Nervenkr., 1929, vol. 87, p. 527.

    Article  Google Scholar 

  23. Berger, H., Uber das Elektrenkephalogramm des Menschen II, J. Psychol. Neurol., 1930, vol. 40, p. 160.

    Google Scholar 

  24. Ristanovic, D., Martinovic, Z.J., and Jovanovic, V., Topography of Visual EEG Reactivity in School-Age Children. Brain Dev., 1999, vol. 21, no. 4, p. 236.

    Article  PubMed  CAS  Google Scholar 

  25. Motokizawa, F. and Fujimori, B., Fast Activities and DC Potential Changes of the Cerebral Cortex during EEG Arousal Response, EEG and Clin. Neurophysiol., 1964, vol. 17, p. 630.

    Article  CAS  Google Scholar 

  26. Volavka, J., Matousek, M., and Roubicek, J., Mental Arithmetic and Eye Opening. An EEG Frequency Analysis and GSR Study, EEG and Clin. Neurophysiol., 1967, vol. 22, p. 174.

    Article  CAS  Google Scholar 

  27. Etevenon, P., Tortrat, D., and Benkelfat, C., Electroencephalographic Cartography. II. By Means of Statistical Group Studies-Activation by Visual Attention, Neuropsychobiology, 1985, vol. 13, no. 3, p. 141.

    Article  PubMed  CAS  Google Scholar 

  28. Etevenon, P., Eustache, F., Mitermite, F., et al., EEG Cartography before and after Visual Stimulation: A Group Study with Descriptive Non-Parametric Analysis of EEG Data, Brain Topogr., 1990, vol. 3, no. 1, p. 13.

    Article  PubMed  CAS  Google Scholar 

  29. Sterman, M., Mann, C., Kaiser, D., and Suyenobu, B., Multiband Topographic EEG Analysis of a Simulated Visuomotor Aviation Task, Int. J. Psychophysiol., 1994, vol. 16, no. 1, p. 49.

    Article  PubMed  CAS  Google Scholar 

  30. Doppelmayr, M., Klimesch, W., Schwaiger, J., et al., Theta Synchronization in the Human EEG and Episodic Retrieval, Neurosci. Lett., 1998, vol. 257, no. 1, p. 41.

    Article  PubMed  CAS  Google Scholar 

  31. Grunwald, M., Weiss, T., Krause, W., et al., Power of Theta Waves in the EEG of Human Subjects Increases during Recall of Haptic Information, Neurosci. Lett., 1999, vol. 260, no. 3, p. 189.

    Article  PubMed  CAS  Google Scholar 

  32. Pollock, V.E., Schneider, L.S., and Lyness, S.A., Reliability of Topographic Quantitative EEG Amplitude in Healthy Late-Middle-Aged and Elderly Subjects, EEG and Clin. Neurophysiol., 1991, vol. 79, no. 1, p. 20.

    Article  CAS  Google Scholar 

  33. Funktsional’nye sostoyaniya mozga (Functional States of the Brain), Sokolov, E.N., Danilova, N.N., and Khomskaya, E.D., Eds., Moscow: Mosk. Gos. Univer., 1975.

    Google Scholar 

  34. Moruzzi, G. and Magoun, H.W., Brain Stem Reticular Formation and Activation of the EEG, EEG and Clin. Neurophysiol., 1949, vol. 1, p. 455.

    CAS  Google Scholar 

  35. Dement, W. and Kleitman, N., Cyclic Variations in EEG during Sleep and Their Relation to Eye Movements, Body Motility, and Dreaming, EEG and Clin. Neurophysiol., 1957, vol. 9, p. 673.

    Article  CAS  Google Scholar 

  36. Tanaka, H., Hayashi, M., and Hori, T., Topographical Characteristics and Principal Component Structure of the Hypnagogic EEG, Sleep, 1997, vol. 20, p. 523.

    PubMed  CAS  Google Scholar 

  37. Ray, W.J. and Cole, H.W., EEG Alpha Activity Reflects Attentional Demands and Beta Activity Reflects Emotional and Cognitive Processes, Science, 1985, vol. 228, no. 4700, p. 750.

    PubMed  CAS  Google Scholar 

  38. Danko, S.G., Bechtereva, N.P., Shemyakina, N.V., and Antonova, L.V., Electroencephalographic Correlates of Mental Performance of Emotional Personal and Scenic Situations: I. Characteristics of Local Synchronization, Fiziol. Chel., 2003, vol. 29, no. 3, p. 5.

    CAS  Google Scholar 

  39. Cooper, N.R., Croft, R.J., Dominey, S.J., et al., Paradox Lost? Exploring the Role of Alpha Oscillations during Externally vs. Internally Directed Attention and the Implications for Idling and Inhibition Hypotheses, Int. J. Psychophysiol., 2003, vol. 47, p. 65.

    Article  PubMed  Google Scholar 

  40. Cantero, J.L., Atienza, M., Madsen, J.R., and Stickgold, R., Gamma EEG Dynamics in Neocortex and Hippocampus during Human Wakefulness and Sleep, Neuroimage, 2004, vol. 22, no. 3, p. 1271.

    Article  PubMed  Google Scholar 

  41. Yanson, Z.A., The Effect of the Mesencephalic Reticular Formation on the Spatial Synchronization of Brain Biopotentials, Zh. Vyssh. Nerv. Deyat. im. I.P. Pavlova, 1973, vol. 23, no. 1, p. 59.

    Google Scholar 

  42. Sviderskaya, N.E. and Korol’kova, T.A., Spatial Synchronization of the Electrical Processes of the Brain: Problems and Solutions, Zh. Vyssh. Nern. Deyat. im. I.P. Pavlova, 1997, vol. 47, no. 5, p. 792.

    Google Scholar 

  43. Kiroi, V.N., Spatiotemporal Organization of the Human Brain Electrical Activity in the State of Quiet Wakefulness and During Performance of Mental Tasks, Zh. Vyssh. Nerv. Deyat. im. I.P. Pavlova, 1987, vol. 37, no. 6, p. 1025.

    CAS  Google Scholar 

  44. Bechtereva, N.P., Danko, S.G., Starchenko, M.G, et al., Study of the Brain Organization of Creativity: III. Brain Activation by the Data of the Analysis of the Local Cerebral Blood Flow and EEG, Fiziol. Chel., 2001, vol. 27, no. 4, p. 6.

    Google Scholar 

  45. von Stein, A. and Sarnthein, J., Different Frequencies for Different Scales of Cortical Integration: From Local Gamma to Long Range Alpha/Theta Synchronization, Int. J. Psychophysiol., 2000, vol. 38, no. 3, p. 301.

    Article  Google Scholar 

  46. Cantero, J.L., Atienza, M., Salas, R.M., and Gomez, C.M., Alpha EEG Coherence in Different Brain States: An Electrophysiological Index of the Arousal Level in Human Subjects, Neurosci. Lett., 1999, vol. 271, no. 3, p. 167.

    Article  PubMed  CAS  Google Scholar 

  47. Hobson, J.A., Pace-Schott, E.F., and Stickgold, R., Dreaming and the Brain: Toward a Cognitive Neuroscience of Conscious States, Behav. Brain Sci., 2000, vol. 23, no. 6, p. 793.

    Article  PubMed  CAS  Google Scholar 

  48. Anokhin, P.K., Uzlovye voprosy teorii funktsional’nykh sistem (Key Problems of the Theory of Functional Systems), Moscow: Nauka, 1980.

    Google Scholar 

  49. Logothetis, N.K., The Neural Basis of the Blood-Oxygen-Level-Dependent Functional Magnetic Resonance Imaging Signal, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2002, vol. 357, no. 1424, p. 1003.

    Article  PubMed  Google Scholar 

  50. Logothetis, N.K. and Wandell, B.A., Interpreting the BOLD Signal, Ann. Rev. Physiol., 2004, vol. 66, p. 735.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.G. Danko, 2006, published in Fiziologiya Cheloveka, 2006, Vol. 32, No. 4, pp. 5–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danko, S.G. The reflection of different aspects of brain activation in the electroencephalogram: Quantitative electroencephalography of the states of rest with the eyes open and closed. Hum Physiol 32, 377–388 (2006). https://doi.org/10.1134/S0362119706040013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119706040013

Keywords

Navigation