Skip to main content
Log in

Generation of human EEG by a combination of long and short range neocortical interactions

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

A theory of neocortical interactions is developed involving both local delays (PSP rise and decay times) and global delays due to finite velocity of action potentials in corticocortical fibers. The theory is based on plausible assumptions regarding input/output relations in neocortical columns and realistic neural parameters. The simultaneous existence of short wavelength waves propagating away from multiple epicenters and long wavelength standing waves due to global boundary conditions is predicted. Both phenomena appear to have dominant oscillation frequencies in the general range of observed EEG phenomena in humans. A mechanism by which removal of diffuse input from the reticular formation may cause an abrupt drop in EEG frequency (as in the transition from the awake to sleeping state) is postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M. Local Cortical Circuits. Springer-Verlag, New York, 1982.

    Google Scholar 

  • Adey, W. R. Electromagnetic field interactions in the brain. In: E. Basar (Ed.), Dynamics of Sensory and Cognitive Processing by the Brain. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  • Braitenberg, V. Cortical architectonics: general and areal. In: M.A.B. Brazier, H. Petsche (Eds.), Architechtonics of the Cerebral Cortex. Raven Press, New York, 1978.

    Google Scholar 

  • Cooper R., Winter, A. L., Crow, H. J. and Walter, W. G. Comparison of subcortical, cortical, and scalp activity using chronically indwelling electrodes in man. Electroencephal. Clin. Neruophysiol., 1965, 18: 217–228.

    Google Scholar 

  • DeLucchi, M. R., Garoutte, B. and Aird, R. B. The scalp as an electroencephalographic averager. Electroencephal. Clin. Neurophysiol., 1975, 38: 93–96.

    Google Scholar 

  • Freeman, W.J. Mass Action in the Nervous System. Academic Press, New York, 1975.

    Google Scholar 

  • Freeman, W. J. Analytic techniques used in the search for the physiological basis of the EEG. In: A. S. Gevins and A. Remond (Eds.), Handbook of Electroencephalography and Clinical Neurophysiology. Elsevier, New York, 1987.

    Google Scholar 

  • Gleick, J. Chaos. Viking, New York, 1987.

    Google Scholar 

  • Ingber, L. Statistical mechanics of neocortical interactions. Basic formulation. Physica 5D, 1982, 83–107.

  • Ingber, L. Statistical mechanics of neocortical interactions. Derivation of short-term memory capacity. Phys. Rev. A., 1984, 29: 3346–3358.

    Google Scholar 

  • Ingber, L. Statistical mechanics of neocortical interactions: EEG dispersion relations. IEEE Trans. Biomed. Eng., 1985, 32: 91–94.

    PubMed  Google Scholar 

  • Ingber, L. and Nunez, P. L. Multiple scales of statistical physics of neocortex: application to electroencephalography. Math. Comput. Modelling., 1989, in press.

  • Katznelson, R.D. Normal modes of the brain: neuroanatomical basis and a physiological theoretical model. In: P.L. Nunez (Ed.), Electric Fields of the Brain: The Neurophysics of EEG. Oxford U Press, New York, 1981.

    Google Scholar 

  • Katznelson, R.D. Deterministic and Stochastic Field Theoretic Models in the Neurophysics of EEG. Ph.D. Dissertation, U. of Calif. at San Diego, 1982.

  • Lopes da Silva, F. H., Hoeks, H., Smiths, H. and Zetterberg, H. Model of brain rhythmic activity. Kybernetik, 1974, 15: 27–37.

    PubMed  Google Scholar 

  • Lopes da Silva, F.H. and Storm van Leeuwen, W. The cortical alpha rhythm in dog: the depth and surface profile of phase. In: M.A.B. Brazier and H. Petsche (Eds.), Architectonics of the Cerebral Cortex. Raven Press, New York, 1978, 319–333.

    Google Scholar 

  • Lopes da Silva, F. H. Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations. In: E. Niedermeyer and F.H. Lopes da Silva (Eds.), Electroencephalography. Basic Principles, Clinical Applications and Related Fields. Urban and Schwarzenberg, Baltimore-Munich, 1987, 15–28.

    Google Scholar 

  • Moon, F. C. Chaotic Vibrations. Wiley, New York, 1987.

    Google Scholar 

  • Nunez, P.L. The brain wave equation: a model for the EEG. Amer. EEG Soc. Meeting Houston, 1972, and Math Biosciences, 1974a, 21: 279–297.

    Google Scholar 

  • Nunez, P.L. Wave-like properties of the alpha rhythm. IEEE Trans. Biomed. Eng., 1974b, 21: 473–482.

    Google Scholar 

  • Nunez, P.L., Reid, L. and Bickford, R.G. The relationship of head size to alpha frequency with implications to a brain wave model. Electroencephal. Clin. Neurophysiol., 1977, 44: 344- 352.

    Google Scholar 

  • Nunez, P.L. Electric Fields of the Brain: The Neurophysics of EEG. Oxford U. Press, New York, 1981a.

    Google Scholar 

  • Nunez, P.L. A study of origins of the time dependencies of scalp EEG: I. Theoretical basis. IEEE Trans. Biomed. Eng., 1981b, 28: 271–280.

    PubMed  Google Scholar 

  • Nunez, P.L. A study of the origins of the time dependencies of scalp EEG: II. Experimental support of theory. IEEE Trans. Biomed. Eng., 1981c, 28: 281–288.

    PubMed  Google Scholar 

  • Nunez, P. L. Spatial filtering and experimental strategies in EEG. In: D. Samson-Dollfus (Ed.), Statistics and Topography in Quantitative EEG. Elsevier, Paris, 1988a.

    Google Scholar 

  • Nunez, P.L. Global contributions to cortical dynamics: theoretical and experimental evidence for standing wave phenomena. In: E. Basar (Ed.), Dynamics of Sensory and Cognitive Processing by the Brain. Springer-Verlag, New York, 1988b.

    Google Scholar 

  • Nunez, P. L. Towards a physics of neocortex. In: V.Z. Marmarelis (Ed.), Advanced Methods of Physiological Systems Modeling, vol.2, 1989, in press.

  • Petsche, H., Pockberger, H. and Rappelsberger, P. On the search for the sources of the electroencephalogram. Neuroscience, 1984, 11: 10–27.

    Google Scholar 

  • Pfurtscheller, G. and Cooper, R. Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephal. Clin. Neurophysiol., 1975, 38: 93–96.

    Google Scholar 

  • Plonsey, R. Bioelectric Phenomena. McGraw-Hill, New York, 1969.

    Google Scholar 

  • Rall, W.A. A statistical theory of monosynaptic input—output relations, J. Cell. Comp. Physiol., 1955, 46: 373–411.

    Google Scholar 

  • Rall, W.A. Experimental monosynaptic input—output relations in mammalian spinal cord. J. Cell. Comp. Physiol., 1955, 46: 413–437.

    Google Scholar 

  • Sholl, D.A. The Organization of the Cerebral Cortex. Wiley, London, 1956.

    Google Scholar 

  • Szentagothai, J. The neural network of the cerebral cortex: a functional interpretation. Proc. Roy. Soc. Lond., 1978a, 201: 219–248.

    Google Scholar 

  • Szentagothai, J. Specificity versus (quasi) randomness in cortical connectivity. In: M.A.B. Brazier and H. Petsche (Eds.), Architectonics of the Cerebral Cortex. Raven Press, New York, 1978b, 77–97.

    Google Scholar 

  • Taylor, C. P., and Dudek, F. E. Excitation of hippocampal pyramidal cells by an electrical field effect. J. Neurophysiol., 1984a, 52: 126–142.

    PubMed  Google Scholar 

  • Taylor, C. P. and Dudek, F. E. Synchronization without active chemical synapses during hippocampal afterdischarges. J. Neurophysiol., 1984b, 52: 143–155.

    PubMed  Google Scholar 

  • Thatcher, R.W., Krouse, P.J. and Hrybyk, M. Cortico-cortical associations and EEG coherence: a two compartmental model. Electroencephal. Clin. Neurophysiol., 1986, 64: 123–143.

    Google Scholar 

  • van Rotterdam, A., Lopes da Silva, F.H., van der Ende, J., Viergever, M.A. and Hermans, A.J. A model of the spatialtemporal characteristics of the alpha rhythm. Bull. Math. Biology., 1982, 44: 283–305.

    Google Scholar 

  • Walter, D.O., Rhodes, J.M., Brown, D. and Adey, W.R. Comprehensive spectral analysis of human EEG generators in posterior cerebral regions. Electroencephal. Clin. Neurophysiol., 1966, 20: 224–237.

    Google Scholar 

  • Wilson, H. R. and Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysics, 12: 1–12.

  • Wilson, H.R. and Cowan, J.D. A mathematical theory of the functional dynamics of cortical and thalmic nervous tissue. Kybernetik, 1973, 13: 55–80.

    PubMed  Google Scholar 

  • Zhadin, M.N. Rhythmic processes in the cerebral cortex. J. Theor. Biol., 1984, 108: 565–595.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF grant ECE8521101 and NIH grant 1RO1NS243314. The author thanks the editor and referees for very helpful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunez, P.L. Generation of human EEG by a combination of long and short range neocortical interactions. Brain Topogr 1, 199–215 (1989). https://doi.org/10.1007/BF01129583

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129583

Key words

Navigation